BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30486950)

  • 21. Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes.
    Haar S; Bruna M; Lian JX; Tomarchio F; Olivier Y; Mazzaro R; Morandi V; Moran J; Ferrari AC; Beljonne D; Ciesielski A; Samorì P
    J Phys Chem Lett; 2016 Jul; 7(14):2714-21. PubMed ID: 27349897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Yield Production of Few-Layer Graphene via New-fashioned Strategy Combining Resonance Ball Milling and Hydrothermal Exfoliation.
    Yang Q; Zhou M; Yang M; Zhang Z; Yu J; Zhang Y; Cheng W; Li X
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32252417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite.
    Liu X; Zheng M; Xiao K; Xiao Y; He C; Dong H; Lei B; Liu Y
    Nanoscale; 2014 May; 6(9):4598-603. PubMed ID: 24632864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rationally designed surfactants for few-layered graphene exfoliation: ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers.
    Zhang L; Zhang Z; He C; Dai L; Liu J; Wang L
    ACS Nano; 2014 Jul; 8(7):6663-70. PubMed ID: 24968119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Green and facile synthesis of few-layer graphene via liquid exfoliation process for Lithium-ion batteries.
    Lin PC; Wu JY; Liu WR
    Sci Rep; 2018 Jun; 8(1):9766. PubMed ID: 29950565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Harnessing the liquid-phase exfoliation of graphene using aliphatic compounds: a supramolecular approach.
    Ciesielski A; Haar S; El Gemayel M; Yang H; Clough J; Melinte G; Gobbi M; Orgiu E; Nardi MV; Ligorio G; Palermo V; Koch N; Ersen O; Casiraghi C; Samorì P
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10355-61. PubMed ID: 25044532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene.
    Gu X; Zhao Y; Sun K; Vieira CLZ; Jia Z; Cui C; Wang Z; Walsh A; Huang S
    Ultrason Sonochem; 2019 Nov; 58():104630. PubMed ID: 31450336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films.
    Wang H; Wei C; Zhu K; Zhang Y; Gong C; Guo J; Zhang J; Yu L; Zhang J
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34456-34466. PubMed ID: 28901733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene.
    Geng X; Guo Y; Li D; Li W; Zhu C; Wei X; Chen M; Gao S; Qiu S; Gong Y; Wu L; Long M; Sun M; Pan G; Liu L
    Sci Rep; 2013; 3():1134. PubMed ID: 23355949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene via sonication assisted liquid-phase exfoliation.
    Ciesielski A; Samorì P
    Chem Soc Rev; 2014 Jan; 43(1):381-98. PubMed ID: 24002478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Tip Sonication Parameters on Liquid Phase Exfoliation of Graphite into Graphene Nanoplatelets.
    Cai X; Jiang Z; Zhang X; Zhang X
    Nanoscale Res Lett; 2018 Aug; 13(1):241. PubMed ID: 30120630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-assisted scalable mechanochemical exfoliation of few-layer biocompatible graphene nanosheets.
    Thomas DG; De-Alwis S; Gupta S; Pecharsky VK; Mendivelso-Perez D; Montazami R; Smith EA; Hashemi NN
    R Soc Open Sci; 2021 Mar; 8(3):200911. PubMed ID: 34035934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low defect concentration few-layer graphene using a two-step electrochemical exfoliation.
    Huang X; Li S; Qi Z; Zhang W; Ye W; Fang Y
    Nanotechnology; 2015 Mar; 26(10):105602. PubMed ID: 25687691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile Production of Graphenic Microsheets and Their Assembly via Water-Based, Surfactant-Aided Mechanical Deformations.
    AlAmer M; Zamani S; Fok K; Satish A; Lim AR; Joo YL
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8944-8951. PubMed ID: 31994382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the Conductive Network of Electrochemical Exfoliation with Graphite Powder as Starting Raw Material for Graphene Production.
    Mei J; Qiu Z; Gao T; Wu Q; Zheng F; Jiang J; Liu K; Huang Y; Wang H; Li Q
    Langmuir; 2023 Mar; 39(12):4413-4426. PubMed ID: 36922738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.
    Niu L; Li M; Tao X; Xie Z; Zhou X; Raju AP; Young RJ; Zheng Z
    Nanoscale; 2013 Aug; 5(16):7202-8. PubMed ID: 23824229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Processing Parameters on Massive Production of Graphene by Jet Cavitation.
    Liang S; Shen Z; Yi M; Liu L; Zhang X; Cai C; Ma S
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2686-94. PubMed ID: 26353482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite.
    Sevilla M; Ferrero GA; Fuertes AB
    Chemistry; 2016 Nov; 22(48):17351-17358. PubMed ID: 27775199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene.
    Yang S; Brüller S; Wu ZS; Liu Z; Parvez K; Dong R; Richard F; Samorì P; Feng X; Müllen K
    J Am Chem Soc; 2015 Nov; 137(43):13927-32. PubMed ID: 26460583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature as a key parameter for graphene sono-exfoliation in water.
    Kaur A; Morton JA; Tyurnina AV; Priyadarshi A; Holland A; Mi J; Porfyrakis K; Eskin DG; Tzanakis I
    Ultrason Sonochem; 2022 Nov; 90():106187. PubMed ID: 36198250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.