These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 30487101)

  • 1. An evaluation for VR glasses system user experience: The influence factors of interactive operation and motion sickness.
    Yu M; Zhou R; Wang H; Zhao W
    Appl Ergon; 2019 Jan; 74():206-213. PubMed ID: 30487101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments.
    Sevinc V; Berkman MI
    Appl Ergon; 2020 Jan; 82():102958. PubMed ID: 31563798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using virtual reality to assess user experience.
    Rebelo F; Noriega P; Duarte E; Soares M
    Hum Factors; 2012 Dec; 54(6):964-82. PubMed ID: 23397807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of using virtual reality in geriatric psychiatry.
    Just SA; Lütt A; Siegle P; Döring-Brandl EJ
    Int J Geriatr Psychiatry; 2024 Jan; 39(1):e6060. PubMed ID: 38241061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion sickness and sense of presence in a virtual reality environment developed for manual wheelchair users, with three different approaches.
    Salimi Z; Ferguson-Pell MW
    PLoS One; 2021; 16(8):e0255898. PubMed ID: 34411151
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Vaezipour A; Aldridge D; Koenig S; Theodoros D; Russell T
    Disabil Rehabil; 2022 Jul; 44(15):3946-3958. PubMed ID: 33715566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual and augmented reality in a simulated naval engagement: Preliminary comparisons of simulator sickness and human performance.
    Pettijohn KA; Peltier C; Lukos JR; Norris JN; Biggs AT
    Appl Ergon; 2020 Nov; 89():103200. PubMed ID: 32658772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential factors contributing to observed sex differences in virtual-reality-induced sickness.
    Bannigan GM; de Sousa AA; Scheller M; Finnegan DJ; Proulx MJ
    Exp Brain Res; 2024 Feb; 242(2):463-475. PubMed ID: 38170233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigating Cybersickness in Virtual Reality Systems through Foveated Depth-of-Field Blur.
    Hussain R; Chessa M; Solari F
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. User Experience Evaluation in Shared Interactive Virtual Reality.
    Guertin-Lahoud S; Coursaris CK; Sénécal S; Léger PM
    Cyberpsychol Behav Soc Netw; 2023 Apr; 26(4):263-272. PubMed ID: 37071640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of navigation interfaces in virtual reality environments: A mixed-method approach.
    Kim YM; Rhiu I
    Appl Ergon; 2021 Oct; 96():103482. PubMed ID: 34116411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel neurodigital interface reduces motion sickness in virtual reality.
    Dopsaj M; Tan W; Perovic V; Stajic Z; Milosavljevic N; Paessler S; Makishima T
    Neurosci Lett; 2024 Mar; 825():137692. PubMed ID: 38382798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis on Mitigation of Visually Induced Motion Sickness by Applying Dynamical Blurring on a User's Retina.
    Nie GY; Duh HB; Liu Y; Wang Y
    IEEE Trans Vis Comput Graph; 2020 Aug; 26(8):2535-2545. PubMed ID: 30668475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation.
    Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T
    Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploratory factor analysis and validity of the virtual reality symptom questionnaire and computer use survey.
    Del Cid DA; Larranaga D; Leitao M; Mosher RL; Berzenski SR; Gandhi V; Drew SA
    Ergonomics; 2021 Jan; 64(1):69-77. PubMed ID: 32921282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep Motion Sickness Predictor Induced by Visual Stimuli in Virtual Reality.
    Kim J; Oh H; Kim W; Choi S; Son W; Lee S
    IEEE Trans Neural Netw Learn Syst; 2022 Feb; 33(2):554-566. PubMed ID: 33079678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual reality environment design of managing both presence and virtual reality sickness.
    Tanaka N; Takagi H
    J Physiol Anthropol Appl Human Sci; 2004 Nov; 23(6):313-7. PubMed ID: 15599082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.