These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30487109)

  • 1. Terrain coefficients for predicting energy costs of walking over snow.
    Richmond PW; Potter AW; Looney DP; Santee WR
    Appl Ergon; 2019 Jan; 74():48-54. PubMed ID: 30487109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Costs of Military Load Carriage over Complex Terrain.
    Looney DP; Santee WR; Karis AJ; Blanchard LA; Rome MN; Carter AJ; Potter AW
    Mil Med; 2018 Sep; 183(9-10):e357-e362. PubMed ID: 29860513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in Cardiorespiratory Responses in Winter Mountaineering According to the Pathway Snow Conditions.
    Carceller A; Javierre C; Corominas J; Viscor G
    High Alt Med Biol; 2019 Mar; 20(1):89-93. PubMed ID: 30835581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic energy expenditure and terrain coefficients for walking on snow.
    Pandolf KB; Haisman MF; Goldman RF
    Ergonomics; 1976 Nov; 19(6):683-90. PubMed ID: 1009916
    [No Abstract]   [Full Text] [Related]  

  • 5. Complex Terrain Load Carriage Energy Expenditure Estimation Using Global Positioning System Devices.
    Potter AW; Santee WR; Mullen SP; Karis AJ; Blanchard LA; Rome MN; Pitts KP; Looney DP
    Med Sci Sports Exerc; 2018 Oct; 50(10):2145-2149. PubMed ID: 29944605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Pandolf equation under-predicts the metabolic rate of contemporary military load carriage.
    Drain JR; Aisbett B; Lewis M; Billing DC
    J Sci Med Sport; 2017 Nov; 20 Suppl 4():S104-S108. PubMed ID: 28919496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The energy expenditure of snowshoeing in packed vs. unpacked snow at low-level walking speeds.
    Connolly DA
    J Strength Cond Res; 2002 Nov; 16(4):606-10. PubMed ID: 12423193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy cost during locomotion across snow: a comparison of four types of snowshoes with snowshoe design considerations.
    Knapik JJ; Hickey C; Ortega S; de Pontbriand R
    Work; 2002; 18(2):171-7. PubMed ID: 12441581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proposed model for load carriage on sloped terrain.
    Santee WR; Allison WF; Blanchard LA; Small MG
    Aviat Space Environ Med; 2001 Jun; 72(6):562-6. PubMed ID: 11396562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Costs of Standing and Walking in Healthy Military-Age Adults: A Meta-regression.
    Looney DP; Potter AW; Pryor JL; Bremner PE; Chalmers CR; McClung HL; Welles AP; Santee WR
    Med Sci Sports Exerc; 2019 Feb; 51(2):346-351. PubMed ID: 30649093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of load carriage and natural terrain conditions on cognitive performance in desert environments.
    Bhattacharyya D; Pal M; Chatterjee T; Majumdar D
    Physiol Behav; 2017 Oct; 179():253-261. PubMed ID: 28668620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pandolf load carriage equation is a poor predictor of metabolic rate while wearing explosive ordnance disposal protective clothing.
    Bach AJ; Costello JT; Borg DN; Stewart IB
    Ergonomics; 2017 Mar; 60(3):430-438. PubMed ID: 27110873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses.
    Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA
    J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of muscle energy models for simulating human walking in three dimensions.
    Miller RH
    J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uneven terrain affects metabolic cost and gait in simulated complex lunar surfaces.
    Kim KJ; Baughman A; Estep P; Rivas E; Young M; Marshall-Goebel K; Abercromby A; Somers J
    Physiol Meas; 2023 Oct; 44(10):. PubMed ID: 37703896
    [No Abstract]   [Full Text] [Related]  

  • 16. Terrestrial movement energetics: current knowledge and its application to the optimising animal.
    Halsey LG
    J Exp Biol; 2016 May; 219(Pt 10):1424-31. PubMed ID: 27207950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic cost of walking: equation and model.
    Workman JM; Armstrong BW
    J Appl Physiol (1985); 1986 Oct; 61(4):1369-74. PubMed ID: 3781952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Metabolic Costs of Heavy Military Backpacking.
    Looney DP; Lavoie EM; Vangala SV; Holden LD; Figueiredo PS; Friedl KE; Frykman PN; Hancock JW; Montain SJ; Pryor JL; Santee WR; Potter AW
    Med Sci Sports Exerc; 2022 Apr; 54(4):646-654. PubMed ID: 34856578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.