BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30487259)

  • 21. The diversity of Rhizobia, Sinorhizobia and novel non-Rhizobial Paenibacillus nodulating wild herbaceous legumes.
    Latif S; Khan S; Naveed M; Mustafa G; Bashir T; Mumtaz AS
    Arch Microbiol; 2013 Sep; 195(9):647-53. PubMed ID: 23896976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-introduction vs ecological fitting as pathways to the establishment of effective mutualisms during biological invasions.
    Le Roux JJ; Hui C; Keet JH; Ellis AG
    New Phytol; 2017 Sep; 215(4):1354-1360. PubMed ID: 28771816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Application of rhizobia-legume symbiosis for remediation of heavy-metal contaminated soils].
    Wei G; Ma Z
    Wei Sheng Wu Xue Bao; 2010 Nov; 50(11):1421-30. PubMed ID: 21268885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The direct effects of plant polyploidy on the legume-rhizobia mutualism.
    Forrester NJ; Ashman TL
    Ann Bot; 2018 Feb; 121(2):209-220. PubMed ID: 29182713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effectiveness of novel and old legume-rhizobia mutualisms: implications for invasion by exotic legumes.
    Rodríguez-Echeverría S; Fajardo S; Ruiz-Díez B; Fernández-Pascual M
    Oecologia; 2012 Sep; 170(1):253-61. PubMed ID: 22419481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How inefficient rhizobia prolong their existence within nodules.
    Schumpp O; Deakin WJ
    Trends Plant Sci; 2010 Apr; 15(4):189-95. PubMed ID: 20117958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.
    Remigi P; Zhu J; Young JPW; Masson-Boivin C
    Trends Microbiol; 2016 Jan; 24(1):63-75. PubMed ID: 26612499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa).
    Lemaire B; Dlodlo O; Chimphango S; Stirton C; Schrire B; Boatwright JS; Honnay O; Smets E; Sprent J; James EK; Muasya AM
    FEMS Microbiol Ecol; 2015 Feb; 91(2):1-17. PubMed ID: 25764552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emergence of β-rhizobia as new root nodulating bacteria in legumes and current status of the legume-rhizobium host specificity dogma.
    Hassen AI; Lamprecht SC; Bopape FL
    World J Microbiol Biotechnol; 2020 Feb; 36(3):40. PubMed ID: 32095903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities.
    Mohamad R; Maynaud G; Le Quéré A; Vidal C; Klonowska A; Yashiro E; Cleyet-Marel JC; Brunel B
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27793823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipochitooligosaccharides and legume Rhizobium symbiosis--a new concept.
    Chimote V; Kashyap LR
    Indian J Exp Biol; 2001 May; 39(5):401-9. PubMed ID: 11510121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhizobium giardinii is the microsymbiont of Illinois bundleflower (Desmanthus illinoensis (Michx.) Macmillan) in midwestern prairies.
    Beyhaut E; Tlusty B; van Berkum P; Graham PH
    Can J Microbiol; 2006 Sep; 52(9):903-7. PubMed ID: 17110983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into the Phylogeny, Nodule Function, and Biogeographic Distribution of Microsymbionts Nodulating the Orphan Kersting's Groundnut [
    Mohammed M; Jaiswal SK; Dakora FD
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30952658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis.
    Hao X; Taghavi S; Xie P; Orbach MJ; Alwathnani HA; Rensing C; Wei G
    Int J Phytoremediation; 2014; 16(2):179-202. PubMed ID: 24912209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular basis of symbiotic promiscuity.
    Perret X; Staehelin C; Broughton WJ
    Microbiol Mol Biol Rev; 2000 Mar; 64(1):180-201. PubMed ID: 10704479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tripartite mutualism: facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts.
    Ossler JN; Zielinski CA; Heath KD
    Am J Bot; 2015 Aug; 102(8):1332-41. PubMed ID: 26290556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nod factors of Rhizobium are a key to the legume door.
    Relić B; Perret X; Estrada-García MT; Kopcinska J; Golinowski W; Krishnan HB; Pueppke SG; Broughton WJ
    Mol Microbiol; 1994 Jul; 13(1):171-8. PubMed ID: 7984092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis.
    Fauvart M; Michiels J
    FEMS Microbiol Lett; 2008 Aug; 285(1):1-9. PubMed ID: 18616593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China.
    Ren DW; Wang ET; Chen WF; Sui XH; Zhang XX; Liu HC; Chen WX
    Int J Syst Evol Microbiol; 2011 Aug; 61(Pt 8):1912-1920. PubMed ID: 20833881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes.
    Sanchez-Contreras M; Bauer WD; Gao M; Robinson JB; Allan Downie J
    Philos Trans R Soc Lond B Biol Sci; 2007 Jul; 362(1483):1149-63. PubMed ID: 17360278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.