These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 30487420)
1. Molecular Characterization and Overexpression of Wang B; Niu J; Li B; Huang Y; Han L; Liu Y; Zhou W; Hu S; Li L; Wang D; Wang S; Cao X; Wang Z Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30487420 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of allene oxide cyclase promoted tanshinone/phenolic acid production in Salvia miltiorrhiza. Gu XC; Chen JF; Xiao Y; Di P; Xuan HJ; Zhou X; Zhang L; Chen WS Plant Cell Rep; 2012 Dec; 31(12):2247-59. PubMed ID: 22926031 [TBL] [Abstract][Full Text] [Related]
3. Changes in secondary metabolites contents and stress responses in Salvia miltiorrhiza via ScWRKY35 overexpression: Insights from a wild relative Salvia castanea. Zhang G; Sun Y; Ullah N; Kasote D; Zhu L; Liu H; Xu L Plant Physiol Biochem; 2024 Jun; 211():108671. PubMed ID: 38703500 [TBL] [Abstract][Full Text] [Related]
4. JA-Responsive Transcription Factor SmMYB97 Promotes Phenolic Acid and Tanshinone Accumulation in Li L; Wang D; Zhou L; Yu X; Yan X; Zhang Q; Li B; Liu Y; Zhou W; Cao X; Wang Z J Agric Food Chem; 2020 Dec; 68(50):14850-14862. PubMed ID: 33284615 [TBL] [Abstract][Full Text] [Related]
5. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. Sun M; Shi M; Wang Y; Huang Q; Yuan T; Wang Q; Wang C; Zhou W; Kai G J Exp Bot; 2019 Jan; 70(1):243-254. PubMed ID: 30299490 [TBL] [Abstract][Full Text] [Related]
6. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Huang Q; Sun M; Yuan T; Wang Y; Shi M; Lu S; Tang B; Pan J; Wang Y; Kai G Food Chem; 2019 Feb; 274():368-375. PubMed ID: 30372953 [TBL] [Abstract][Full Text] [Related]
7. Selective responses of enzymes in the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza hairy root cultures. Zhang S; Yan Y; Wang B; Liang Z; Liu Y; Liu F; Qi Z J Biosci Bioeng; 2014 May; 117(5):645-51. PubMed ID: 24220646 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots. Xing B; Liang L; Liu L; Hou Z; Yang D; Yan K; Zhang X; Liang Z Plant Cell Rep; 2018 Dec; 37(12):1681-1692. PubMed ID: 30229287 [TBL] [Abstract][Full Text] [Related]
9. HPPR encodes the hydroxyphenylpyruvate reductase required for the biosynthesis of hydrophilic phenolic acids in Salvia miltiorrhiza. Wang GQ; Chen JF; Yi B; Tan HX; Zhang L; Chen WS Chin J Nat Med; 2017 Dec; 15(12):917-927. PubMed ID: 29329649 [TBL] [Abstract][Full Text] [Related]
10. Increased phenolic acid and tanshinone production and transcriptional responses of biosynthetic genes in hairy root cultures of Salvia przewalskii Maxim. treated with methyl jasmonate and salicylic acid. Li J; Li B; Luo L; Cao F; Yang B; Gao J; Yan Y; Zhang G; Peng L; Hu B Mol Biol Rep; 2020 Nov; 47(11):8565-8578. PubMed ID: 33048323 [TBL] [Abstract][Full Text] [Related]
11. [Research of mechanism of secondary metabolites of phenolic acids in Salvia miltiorrhiza hairy root induced by jasmonate]. Li W; Gao W; Zhao J; Cui G; Shao A; Huang L Zhongguo Zhong Yao Za Zhi; 2012 Jan; 37(1):13-6. PubMed ID: 22741454 [TBL] [Abstract][Full Text] [Related]
12. Cloning and characterization of a putative R2R3 MYB transcriptional repressor of the rosmarinic acid biosynthetic pathway from Salvia miltiorrhiza. Zhang S; Ma P; Yang D; Li W; Liang Z; Liu Y; Liu F PLoS One; 2013; 8(9):e73259. PubMed ID: 24039895 [TBL] [Abstract][Full Text] [Related]
13. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice. Qi J; Li J; Han X; Li R; Wu J; Yu H; Hu L; Xiao Y; Lu J; Lou Y J Integr Plant Biol; 2016 Jun; 58(6):564-76. PubMed ID: 26466818 [TBL] [Abstract][Full Text] [Related]
14. Improved phenolic acid content and bioactivities of Salvia miltiorrhiza hairy roots by genetic manipulation of RAS and CYP98A14. Fu R; Shi M; Deng C; Zhang Y; Zhang X; Wang Y; Kai G Food Chem; 2020 Nov; 331():127365. PubMed ID: 32619909 [TBL] [Abstract][Full Text] [Related]
15. Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots. Liu L; Yang D; Liang T; Zhang H; He Z; Liang Z Plant Cell Rep; 2016 Sep; 35(9):1933-42. PubMed ID: 27271760 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation. Luo H; Zhu Y; Song J; Xu L; Sun C; Zhang X; Xu Y; He L; Sun W; Xu H; Wang B; Li X; Li C; Liu J; Chen S Physiol Plant; 2014 Oct; 152(2):241-55. PubMed ID: 24660670 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional Profiles of Yu H; Guo W; Yang D; Hou Z; Liang Z Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29843472 [No Abstract] [Full Text] [Related]
18. SmbHLH53 is relevant to jasmonate signaling and plays dual roles in regulating the genes for enzymes in the pathway for salvianolic acid B biosynthesis in Salvia miltiorrhiza. Peng JJ; Wu YC; Wang SQ; Niu JF; Cao XY Gene; 2020 Sep; 756():144920. PubMed ID: 32593720 [TBL] [Abstract][Full Text] [Related]
19. Transcription factor SmSPL7 promotes anthocyanin accumulation and negatively regulates phenolic acid biosynthesis in Salvia miltiorrhiza. Chen R; Cao Y; Wang W; Li Y; Wang D; Wang S; Cao X Plant Sci; 2021 Sep; 310():110993. PubMed ID: 34315580 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Zhou W; Huang Q; Wu X; Zhou Z; Ding M; Shi M; Huang F; Li S; Wang Y; Kai G Sci Rep; 2017 Sep; 7(1):10554. PubMed ID: 28874707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]