These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30487522)

  • 1. Structural insight into
    Son HF; Lee SM; Kim KJ
    Sci Rep; 2018 Nov; 8(1):17442. PubMed ID: 30487522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GRE2 from Scheffersomyces stipitis as an aldehyde reductase contributes tolerance to aldehyde inhibitors derived from lignocellulosic biomass.
    Wang X; Ma M; Liu ZL; Xiang Q; Li X; Liu N; Zhang X
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6671-6682. PubMed ID: 27003269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of yeast xylose reductase in complex with a novel NADP-DTT adduct provides insights into substrate recognition and catalysis.
    Paidimuddala B; Mohapatra SB; Gummadi SN; Manoj N
    FEBS J; 2018 Dec; 285(23):4445-4464. PubMed ID: 30269423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-factor binding confers substrate specificity to xylose reductase from Debaryomyces hansenii.
    Biswas D; Pandya V; Singh AK; Mondal AK; Kumaran S
    PLoS One; 2012; 7(9):e45525. PubMed ID: 23049810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.
    Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR
    Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulation to investigate the cofactor specificity for pichia stipitis Xylose reductase.
    Xia XL; Cong S; Weng XR; Chen JH; Wang JF; Chou KC
    Med Chem; 2013 Nov; 9(7):985-92. PubMed ID: 23521003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis.
    Balagurunathan B; Jonnalagadda S; Tan L; Srinivasan R
    Microb Cell Fact; 2012 Feb; 11():27. PubMed ID: 22356827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.
    Khattab SM; Watanabe S; Saimura M; Kodaki T
    Biochem Biophys Res Commun; 2011 Jan; 404(2):634-7. PubMed ID: 21146502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation.
    Anderlund M; Rådström P; Hahn-Hägerdal B
    Metab Eng; 2001 Jul; 3(3):226-35. PubMed ID: 11461145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis.
    Kratzer R; Leitgeb S; Wilson DK; Nidetzky B
    Biochem J; 2006 Jan; 393(Pt 1):51-8. PubMed ID: 16336198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis.
    Lee JK; Koo BS; Kim SY
    Appl Environ Microbiol; 2003 Oct; 69(10):6179-88. PubMed ID: 14532079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylose reductase from the Basidiomycete fungus Cryptococcus flavus: purification, steady-state kinetic characterization, and detailed analysis of the substrate binding pocket using structure-activity relationships.
    Mayr P; Petschacher B; Nidetzky B
    J Biochem; 2003 Apr; 133(4):553-62. PubMed ID: 12761304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aldose reductase as a target for drug design: molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme.
    De Winter HL; von Itzstein M
    Biochemistry; 1995 Jul; 34(26):8299-308. PubMed ID: 7599122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP.
    Wang JF; Wei DQ; Lin Y; Wang YH; Du HL; Li YX; Chou KC
    Biochem Biophys Res Commun; 2007 Jul; 359(2):323-9. PubMed ID: 17544374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H
    Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC
    Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative assessment of fermentative capacity of different xylose-consuming yeasts.
    Veras HCT; Parachin NS; Almeida JRM
    Microb Cell Fact; 2017 Sep; 16(1):153. PubMed ID: 28903764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica.
    Wu Y; Xu S; Gao X; Li M; Li D; Lu W
    Microb Cell Fact; 2019 May; 18(1):83. PubMed ID: 31103047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Cell Surface Display of β-d-Glucosidase (BGL), Maltose Transporter (MAL11), and Overexpression of Cytosolic Xylose Reductase (XR) in Saccharomyces cerevisiae Enhance Cellobiose/Xylose Coutilization for Xylitol Bioproduction from Lignocellulosic Biomass.
    Guirimand GGY; Bamba T; Matsuda M; Inokuma K; Morita K; Kitada Y; Kobayashi Y; Yukawa T; Sasaki K; Ogino C; Hasunuma T; Kondo A
    Biotechnol J; 2019 Sep; 14(9):e1800704. PubMed ID: 31283105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional properties of aldose xylose reductase from the D-xylose-metabolizing yeast Candida tenuis.
    Nidetzky B; Mayr P; Neuhauser W; Puchberger M
    Chem Biol Interact; 2001 Jan; 130-132(1-3):583-95. PubMed ID: 11306077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.