These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30487522)

  • 41. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR.
    Xie CY; Yang BX; Song QR; Xia ZY; Gou M; Tang YQ
    Microb Cell Fact; 2020 Nov; 19(1):211. PubMed ID: 33187525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis.
    Jo JH; Park YC; Jin YS; Seo JH
    Bioresour Technol; 2017 Oct; 241():88-94. PubMed ID: 28550778
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaerobic xylose fermentation by Spathaspora passalidarum.
    Hou X
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):205-14. PubMed ID: 22124720
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatially Organized Enzymes Drive Cofactor-Coupled Cascade Reactions.
    Ngo TA; Nakata E; Saimura M; Morii T
    J Am Chem Soc; 2016 Mar; 138(9):3012-21. PubMed ID: 26881296
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolution in reverse: engineering a D-xylose-specific xylose reductase.
    Nair NU; Zhao H
    Chembiochem; 2008 May; 9(8):1213-5. PubMed ID: 18383056
    [No Abstract]   [Full Text] [Related]  

  • 46. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae.
    Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K
    Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in Aspergillus carbonarius.
    Weyda I; Lübeck M; Ahring BK; Lübeck PS
    J Ind Microbiol Biotechnol; 2014 Apr; 41(4):733-9. PubMed ID: 24570325
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars.
    Hughes SR; Gibbons WR; Bang SS; Pinkelman R; Bischoff KM; Slininger PJ; Qureshi N; Kurtzman CP; Liu S; Saha BC; Jackson JS; Cotta MA; Rich JO; Javers JE
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):163-73. PubMed ID: 21748309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic and Transcriptional Analysis of Recombinant Saccharomyces Cerevisiae for Xylose Fermentation: A Feasible and Efficient Approach.
    Shi XC; Zhang Y; Wang T; Wang XC; Lv HB; Laborda P; Duan TT
    IEEE J Biomed Health Inform; 2022 Jun; 26(6):2425-2434. PubMed ID: 34077376
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-temperature ethanol production by a series of recombinant xylose-fermenting Kluyveromyces marxianus strains.
    Suzuki T; Hoshino T; Matsushika A
    Enzyme Microb Technol; 2019 Oct; 129():109359. PubMed ID: 31307575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae.
    Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temporal analysis of xylose fermentation by Scheffersomyces stipitis using shotgun proteomics.
    Huang EL; Lefsrud MG
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1507-14. PubMed ID: 22638791
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Site-directed mutagenesis of the cysteine residues in the Pichia stipitis xylose reductase.
    Zhang Y; Lee H
    FEMS Microbiol Lett; 1997 Feb; 147(2):227-32. PubMed ID: 9119198
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
    Bera AK; Ho NW; Khan A; Sedlak M
    J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes.
    Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B
    Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genomic analysis and D-xylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae f. a., sp. nov. and Spathaspora gorwiae f. a., sp. nov.
    Lopes MR; Morais CG; Kominek J; Cadete RM; Soares MA; Uetanabaro AP; Fonseca C; Lachance MA; Hittinger CT; Rosa CA
    FEMS Yeast Res; 2016 Jun; 16(4):. PubMed ID: 27188884
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis.
    Amore R; Kötter P; Küster C; Ciriacy M; Hollenberg CP
    Gene; 1991 Dec; 109(1):89-97. PubMed ID: 1756986
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ethanol production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase.
    Tamakawa H; Ikushima S; Yoshida S
    Biosci Biotechnol Biochem; 2011; 75(10):1994-2000. PubMed ID: 21979076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.