These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30487582)

  • 1. Thermodynamic phases in two-dimensional active matter.
    Klamser JU; Kapfer SC; Krauth W
    Nat Commun; 2018 Nov; 9(1):5045. PubMed ID: 30487582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic-Monte Carlo perspective on active matter.
    Klamser JU; Kapfer SC; Krauth W
    J Chem Phys; 2019 Apr; 150(14):144113. PubMed ID: 30981254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full Phase Diagram of Active Brownian Disks: From Melting to Motility-Induced Phase Separation.
    Digregorio P; Levis D; Suma A; Cugliandolo LF; Gonnella G; Pagonabarraga I
    Phys Rev Lett; 2018 Aug; 121(9):098003. PubMed ID: 30230874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions.
    Kapfer SC; Krauth W
    Phys Rev Lett; 2015 Jan; 114(3):035702. PubMed ID: 25659008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient structured fluctuations in a two-dimensional system with multiple ordered phases.
    Krebs Z; Roitman AB; Nowack LM; Liepold C; Lin B; Rice SA
    J Chem Phys; 2018 Jul; 149(3):034503. PubMed ID: 30037243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexatic and mesoscopic phases in a 2D quantum coulomb system.
    Clark BK; Casula M; Ceperley DM
    Phys Rev Lett; 2009 Jul; 103(5):055701. PubMed ID: 19792514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step melting in two dimensions: first-order liquid-hexatic transition.
    Bernard EP; Krauth W
    Phys Rev Lett; 2011 Oct; 107(15):155704. PubMed ID: 22107304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase separation and emergence of collective motion in a one-dimensional system of active particles.
    Barberis L; Peruani F
    J Chem Phys; 2019 Apr; 150(14):144905. PubMed ID: 30981266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Eighth Liquid Matter Conference.
    Dellago C; Kahl G; Likos CN
    J Phys Condens Matter; 2012 Jul; 24(28):280301. PubMed ID: 22740596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of attraction in the phase diagrams and melting scenarios of generalized 2D Lennard-Jones systems.
    Tsiok EN; Fomin YD; Gaiduk EA; Tareyeva EE; Ryzhov VN; Libet PA; Dmitryuk NA; Kryuchkov NP; Yurchenko SO
    J Chem Phys; 2022 Mar; 156(11):114703. PubMed ID: 35317571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase coexistence in a monolayer of active particles induced by Marangoni flows.
    Domínguez A; Popescu MN
    Soft Matter; 2018 Oct; 14(39):8017-8029. PubMed ID: 30246847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transitions in two-dimensional colloidal particles at oil/water interfaces.
    Lin BJ; Chen LJ
    J Chem Phys; 2007 Jan; 126(3):034706. PubMed ID: 17249895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic phases of active matter systems with quenched disorder.
    Sándor C; Libál A; Reichhardt C; Olson Reichhardt CJ
    Phys Rev E; 2017 Mar; 95(3-1):032606. PubMed ID: 28415221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral Active Hexatics: Giant Number Fluctuations, Waves, and Destruction of Order.
    Maitra A; Lenz M; Voituriez R
    Phys Rev Lett; 2020 Dec; 125(23):238005. PubMed ID: 33337208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering and phase behaviour of attractive active particles with hydrodynamics.
    Navarro RM; Fielding SM
    Soft Matter; 2015 Oct; 11(38):7525-46. PubMed ID: 26278520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-liquid phase transition in a two-dimensional system with anomalous liquid properties.
    Urbic T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062303. PubMed ID: 24483440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective dynamics of self-propelled semiflexible filaments.
    Duman Ö; Isele-Holder RE; Elgeti J; Gompper G
    Soft Matter; 2018 Jun; 14(22):4483-4494. PubMed ID: 29808191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved modeling of two-dimensional transitions in dense phases on crystalline surfaces. Krypton-graphite system.
    Ustinov EA
    J Chem Phys; 2015 Feb; 142(7):074701. PubMed ID: 25702018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective behavior of penetrable self-propelled rods in two dimensions.
    Abkenar M; Marx K; Auth T; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System.
    Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G
    Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.