These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 30487597)

  • 1. The ERK and JNK pathways in the regulation of metabolic reprogramming.
    Papa S; Choy PM; Bubici C
    Oncogene; 2019 Mar; 38(13):2223-2240. PubMed ID: 30487597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking metabolic reprogramming to therapy resistance in cancer.
    Morandi A; Indraccolo S
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):1-6. PubMed ID: 28065746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis.
    Daye D; Wellen KE
    Semin Cell Dev Biol; 2012 Jun; 23(4):362-9. PubMed ID: 22349059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protein kinase MAP3K19 phosphorylates MAP2Ks and thereby activates ERK and JNK kinases and increases viability of KRAS-mutant lung cancer cells.
    Hoang VT; Nyswaner K; Torres-Ayuso P; Brognard J
    J Biol Chem; 2020 Jun; 295(25):8470-8479. PubMed ID: 32358059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long non-coding RNAs involved in cancer metabolic reprogramming.
    Liu H; Luo J; Luan S; He C; Li Z
    Cell Mol Life Sci; 2019 Feb; 76(3):495-504. PubMed ID: 30341461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.
    Guido C; Whitaker-Menezes D; Capparelli C; Balliet R; Lin Z; Pestell RG; Howell A; Aquila S; Andò S; Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Aug; 11(16):3019-35. PubMed ID: 22874531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria and the permeability transition pore in cancer metabolic reprogramming.
    Guo L
    Biochem Pharmacol; 2021 Jun; 188():114537. PubMed ID: 33811907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic reprogramming links chronic intestinal inflammation and the oncogenic transformation in colorectal tumorigenesis.
    Zhang S; Cao L; Li Z; Qu D
    Cancer Lett; 2019 May; 450():123-131. PubMed ID: 30851417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Even the Warburg effect can be oxidized: metabolic cooperation and tumor development].
    Cordier-Bussat M; Thibert C; Sujobert P; Genestier L; Fontaine É; Billaud M
    Med Sci (Paris); 2018; 34(8-9):701-708. PubMed ID: 30230466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal integration by JNK and p38 MAPK pathways in cancer development.
    Wagner EF; Nebreda AR
    Nat Rev Cancer; 2009 Aug; 9(8):537-49. PubMed ID: 19629069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer proliferation and therapy: the Warburg effect and quantum metabolism.
    Demetrius LA; Coy JF; Tuszynski JA
    Theor Biol Med Model; 2010 Jan; 7():2. PubMed ID: 20085650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The involvement of MAPK signaling pathways in determining the cellular response to p53 activation: cell cycle arrest or apoptosis.
    Brown L; Benchimol S
    J Biol Chem; 2006 Feb; 281(7):3832-40. PubMed ID: 16330547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pro-apoptotic and pro-proliferation functions of the JNK pathway of Drosophila: roles in cell competition, tumorigenesis and regeneration.
    Pinal N; Calleja M; Morata G
    Open Biol; 2019 Mar; 9(3):180256. PubMed ID: 30836847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of mammalian sirtuins in cancer metabolism.
    Sebastián C; Mostoslavsky R
    Semin Cell Dev Biol; 2015 Jul; 43():33-42. PubMed ID: 26238985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRB3 interacts with ERK and JNK and contributes to the proliferation, apoptosis, and migration of lung adenocarcinoma cells.
    Cao X; Fang X; Malik WS; He Y; Li X; Xie M; Sun W; Xu Y; Liu X
    J Cell Physiol; 2020 Jan; 235(1):538-547. PubMed ID: 31256425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JNK/SAPK Signaling Is Essential for Efficient Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells.
    Neganova I; Shmeleva E; Munkley J; Chichagova V; Anyfantis G; Anderson R; Passos J; Elliott DJ; Armstrong L; Lako M
    Stem Cells; 2016 May; 34(5):1198-212. PubMed ID: 26867034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation.
    Schiliro C; Firestein BL
    Cells; 2021 Apr; 10(5):. PubMed ID: 33946927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.