These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30487613)

  • 1. Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale.
    GRAVITY Collaboration
    Nature; 2018 Nov; 563(7733):657-660. PubMed ID: 30487613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relativistic reverberation in the accretion flow of a tidal disruption event.
    Kara E; Miller JM; Reynolds C; Dai L
    Nature; 2016 Jul; 535(7612):388-90. PubMed ID: 27338795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast inflows as the adjacent fuel of supermassive black hole accretion disks in quasars.
    Zhou H; Shi X; Yuan W; Hao L; Chen X; Ge J; Ji T; Jiang P; Li G; Liu B; Liu G; Liu W; Lu H; Pan X; Shen J; Shu X; Sun L; Tian Q; Wang H; Wang T; Wu S; Yang C; Zhang S; Zhong Z
    Nature; 2019 Sep; 573(7772):83-86. PubMed ID: 31485059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverberation mapping of active galactic nuclei: from X-ray corona to dusty torus.
    Cackett EM; Bentz MC; Kara E
    iScience; 2021 Jun; 24(6):102557. PubMed ID: 34151226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response of relativistic outflowing gas to the inner accretion disk of a black hole.
    Parker ML; Pinto C; Fabian AC; Lohfink A; Buisson DJ; Alston WN; Kara E; Cackett EM; Chiang CY; Dauser T; De Marco B; Gallo LC; Garcia J; Harrison FA; King AL; Middleton MJ; Miller JM; Miniutti G; Reynolds CS; Uttley P; Vasudevan R; Walton DJ; Wilkins DR; Zoghbi A
    Nature; 2017 Mar; 543(7643):83-86. PubMed ID: 28252065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A candidate sub-parsec supermassive binary black hole system.
    Boroson TA; Lauer TR
    Nature; 2009 Mar; 458(7234):53-5. PubMed ID: 19262667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.
    Tombesi F; Meléndez M; Veilleux S; Reeves JN; González-Alfonso E; Reynolds CS
    Nature; 2015 Mar; 519(7544):436-8. PubMed ID: 25810204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers.
    Mayer L; Kazantzidis S; Escala A; Callegari S
    Nature; 2010 Aug; 466(7310):1082-4. PubMed ID: 20740009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.
    Neilsen J; Lee JC
    Nature; 2009 Mar; 458(7237):481-4. PubMed ID: 19325629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamically important magnetic fields near accreting supermassive black holes.
    Zamaninasab M; Clausen-Brown E; Savolainen T; Tchekhovskoy A
    Nature; 2014 Jun; 510(7503):126-8. PubMed ID: 24899311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre.
    Genzel R; Schödel R; Ott T; Eckart A; Alexander T; Lacombe F; Rouan D; Aschenbach B
    Nature; 2003 Oct; 425(6961):934-7. PubMed ID: 14586462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The diversity of quasars unified by accretion and orientation.
    Shen Y; Ho LC
    Nature; 2014 Sep; 513(7517):210-3. PubMed ID: 25209799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The corona contracts in a black-hole transient.
    Kara E; Steiner JF; Fabian AC; Cackett EM; Uttley P; Remillard RA; Gendreau KC; Arzoumanian Z; Altamirano D; Eikenberry S; Enoto T; Homan J; Neilsen J; Stevens AL
    Nature; 2019 Jan; 565(7738):198-201. PubMed ID: 30626944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared.
    Kishimoto M; Antonucci R; Blaes O; Lawrence A; Boisson C; Albrecht M; Leipski C
    Nature; 2008 Jul; 454(7203):492-4. PubMed ID: 18650919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cool accretion disk around the Galactic Centre black hole.
    Murchikova EM; Phinney ES; Pancoast A; Blandford RD
    Nature; 2019 Jun; 570(7759):83-86. PubMed ID: 31168104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The route to massive black hole formation via merger-driven direct collapse: a review.
    Mayer L; Bonoli S
    Rep Prog Phys; 2019 Jan; 82(1):016901. PubMed ID: 30057369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The power of relativistic jets is larger than the luminosity of their accretion disks.
    Ghisellini G; Tavecchio F; Maraschi L; Celotti A; Sbarrato T
    Nature; 2014 Nov; 515(7527):376-8. PubMed ID: 25409827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflection from the strong gravity regime in a lensed quasar at redshift z = 0.658.
    Reis RC; Reynolds MT; Miller JM; Walton DJ
    Nature; 2014 Mar; 507(7491):207-9. PubMed ID: 24598545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold, clumpy accretion onto an active supermassive black hole.
    Tremblay GR; Oonk JB; Combes F; Salomé P; O'Dea C; Baum SA; Voit GM; Donahue M; McNamara BR; Davis TA; McDonald MA; Edge AC; Clarke TE; Galván-Madrid R; Bremer MN; Edwards LO; Fabian AC; Hamer S; Li Y; Maury A; Russell HR; Quillen AC; Urry CM; Sanders JS; Wise MW
    Nature; 2016 Jun; 534(7606):218-21. PubMed ID: 27279215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.
    Wu XB; Wang F; Fan X; Yi W; Zuo W; Bian F; Jiang L; McGreer ID; Wang R; Yang J; Yang Q; Thompson D; Beletsky Y
    Nature; 2015 Feb; 518(7540):512-5. PubMed ID: 25719667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.