BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30487655)

  • 1. Monitoring early S-phase origin firing and replication fork movement by sequencing nascent DNA from synchronized cells.
    Macheret M; Halazonetis TD
    Nat Protoc; 2019 Jan; 14(1):51-67. PubMed ID: 30487655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring genome-wide replication fork directionality by Okazaki fragment sequencing in mammalian cells.
    Kit Leng Lui S; Keegan S; Tonzi P; Kahli M; Chen YH; Chalhoub N; Coleman KE; Fenyo D; Smith DJ; Huang TT
    Nat Protoc; 2021 Feb; 16(2):1193-1218. PubMed ID: 33442052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA.
    Sirbu BM; Couch FB; Cortez D
    Nat Protoc; 2012 Mar; 7(3):594-605. PubMed ID: 22383038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human CST abundance determines recovery from diverse forms of DNA damage and replication stress.
    Wang F; Stewart J; Price CM
    Cell Cycle; 2014; 13(22):3488-98. PubMed ID: 25483097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Vaccinia Virus Replisome and Transcriptome Proteins by Isolation of Proteins on Nascent DNA Coupled with Mass Spectrometry.
    Senkevich TG; Katsafanas GC; Weisberg A; Olano LR; Moss B
    J Virol; 2017 Oct; 91(19):. PubMed ID: 28747503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression.
    Sheu YJ; Kinney JB; Stillman B
    Genome Res; 2016 Mar; 26(3):315-30. PubMed ID: 26733669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.
    Guilbaud G; Rappailles A; Baker A; Chen CL; Arneodo A; Goldar A; d'Aubenton-Carafa Y; Thermes C; Audit B; Hyrien O
    PLoS Comput Biol; 2011 Dec; 7(12):e1002322. PubMed ID: 22219720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases.
    Tanaka T; Nasmyth K
    EMBO J; 1998 Sep; 17(17):5182-91. PubMed ID: 9724654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Click Chemistry for Analysis of Cell Proliferation in Flow Cytometry.
    Clarke ST; Calderon V; Bradford JA
    Curr Protoc Cytom; 2017 Oct; 82():7.49.1-7.49.30. PubMed ID: 28967990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EdU induces DNA damage response and cell death in mESC in culture.
    Kohlmeier F; Maya-Mendoza A; Jackson DA
    Chromosome Res; 2013 Mar; 21(1):87-100. PubMed ID: 23463495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication in hydroxyurea: it's a matter of time.
    Alvino GM; Collingwood D; Murphy JM; Delrow J; Brewer BJ; Raghuraman MK
    Mol Cell Biol; 2007 Sep; 27(18):6396-406. PubMed ID: 17636020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication fork movement sets chromatin loop size and origin choice in mammalian cells.
    Courbet S; Gay S; Arnoult N; Wronka G; Anglana M; Brison O; Debatisse M
    Nature; 2008 Sep; 455(7212):557-60. PubMed ID: 18716622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast.
    Hayashi M; Katou Y; Itoh T; Tazumi A; Yamada Y; Takahashi T; Nakagawa T; Shirahige K; Masukata H
    EMBO J; 2007 Mar; 26(5):1327-39. PubMed ID: 17304213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication.
    Santocanale C; Diffley JF
    Nature; 1998 Oct; 395(6702):615-8. PubMed ID: 9783589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of altered replication dynamics after DNA damage in human cells.
    Merrick CJ; Jackson D; Diffley JF
    J Biol Chem; 2004 May; 279(19):20067-75. PubMed ID: 14982920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment of DNA replication intermediates by EdU pull down.
    Pessina F; Romussi A; Piccini D; Mazzucco G; Varasi M; Doksani Y
    Methods Cell Biol; 2024; 182():83-94. PubMed ID: 38359989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Dissection of Chromatin Maturation via Click Chemistry.
    Yildirim O; Kingston RE
    Curr Protoc Mol Biol; 2016 Apr; 114():21.33.1-21.33.11. PubMed ID: 27038388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing.
    Bianco JN; Poli J; Saksouk J; Bacal J; Silva MJ; Yoshida K; Lin YL; Tourrière H; Lengronne A; Pasero P
    Methods; 2012 Jun; 57(2):149-57. PubMed ID: 22579803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low rate of replication fork progression lengthens the replication timing of a locus containing an early firing origin.
    Bénard M; Maric C; Pierron G
    Nucleic Acids Res; 2007; 35(17):5763-74. PubMed ID: 17717000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Replication Assay (MIRA) for Efficient in situ Quantification of Nascent mtDNA and Protein Interactions with Nascent mtDNA (mitoSIRF).
    Lozen M; Chen Y; Boisvert RA; Schlacher K
    Bio Protoc; 2023 May; 13(10):e4680. PubMed ID: 37251092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.