These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30487660)

  • 1. Genomic and exoproteomic diversity in plant biomass degradation approaches among Aspergilli.
    Mäkelä MR; DiFalco M; McDonnell E; Nguyen TTM; Wiebenga A; Hildén K; Peng M; Grigoriev IV; Tsang A; de Vries RP
    Stud Mycol; 2018 Sep; 91():79-99. PubMed ID: 30487660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closely related fungi employ diverse enzymatic strategies to degrade plant biomass.
    Benoit I; Culleton H; Zhou M; DiFalco M; Aguilar-Osorio G; Battaglia E; Bouzid O; Brouwer CPJM; El-Bushari HBO; Coutinho PM; Gruben BS; Hildén KS; Houbraken J; Barboza LAJ; Levasseur A; Majoor E; Mäkelä MR; Narang HM; Trejo-Aguilar B; van den Brink J; vanKuyk PA; Wiebenga A; McKie V; McCleary B; Tsang A; Henrissat B; de Vries RP
    Biotechnol Biofuels; 2015; 8():107. PubMed ID: 26236396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penicillium subrubescens adapts its enzyme production to the composition of plant biomass.
    Dilokpimol A; Peng M; Di Falco M; Chin A Woeng T; Hegi RMW; Granchi Z; Tsang A; Hildén KS; Mäkelä MR; de Vries RP
    Bioresour Technol; 2020 Sep; 311():123477. PubMed ID: 32408196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp.
    Aguilar-Pontes MV; Zhou M; van der Horst S; Theelen B; de Vries RP; van den Brink J
    Biotechnol Biofuels; 2016; 9():41. PubMed ID: 26900400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating Transcriptional Regulation of Plant Biomass Degrading Enzyme Networks for Rational Design of Industrial Fungal Strains.
    Alazi E; Ram AFJ
    Front Bioeng Biotechnol; 2018; 6():133. PubMed ID: 30320082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification.
    Mäkelä MR; Mansouri S; Wiebenga A; Rytioja J; de Vries RP; Hildén KS
    N Biotechnol; 2016 Dec; 33(6):834-841. PubMed ID: 27469436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CAZyme prediction in ascomycetous yeast genomes guides discovery of novel xylanolytic species with diverse capacities for hemicellulose hydrolysis.
    Ravn JL; Engqvist MKM; Larsbrink J; Geijer C
    Biotechnol Biofuels; 2021 Jul; 14(1):150. PubMed ID: 34215291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates.
    Häkkinen M; Arvas M; Oja M; Aro N; Penttilä M; Saloheimo M; Pakula TM
    Microb Cell Fact; 2012 Oct; 11():134. PubMed ID: 23035824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome.
    Blackman LM; Cullerne DP; Hardham AR
    BMC Genomics; 2014 Sep; 15():785. PubMed ID: 25214042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Genomics of Rumen
    Palevich N; Kelly WJ; Leahy SC; Denman S; Altermann E; Rakonjac J; Attwood GT
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus
    Hüttner S; Nguyen TT; Granchi Z; Chin-A-Woeng T; Ahrén D; Larsbrink J; Thanh VN; Olsson L
    Biotechnol Biofuels; 2017; 10():265. PubMed ID: 29158777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan.
    Jagadeeswaran G; Gainey L; Prade R; Mort AJ
    Appl Microbiol Biotechnol; 2016 May; 100(10):4535-47. PubMed ID: 27075737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2014 Jan; 15():6. PubMed ID: 24422981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.
    Kolbusz MA; Di Falco M; Ishmael N; Marqueteau S; Moisan MC; Baptista CDS; Powlowski J; Tsang A
    Fungal Genet Biol; 2014 Nov; 72():10-20. PubMed ID: 24881579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae.
    Coutinho PM; Andersen MR; Kolenova K; vanKuyk PA; Benoit I; Gruben BS; Trejo-Aguilar B; Visser H; van Solingen P; Pakula T; Seiboth B; Battaglia E; Aguilar-Osorio G; de Jong JF; Ohm RA; Aguilar M; Henrissat B; Nielsen J; Stålbrand H; de Vries RP
    Fungal Genet Biol; 2009 Mar; 46 Suppl 1():S161-S169. PubMed ID: 19618505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.
    Ferreira Filho JA; Horta MAC; Beloti LL; Dos Santos CA; de Souza AP
    BMC Genomics; 2017 Oct; 18(1):779. PubMed ID: 29025413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome Profiling-Based Analysis of Carbohydrate-Active Enzymes in
    Corrêa CL; Midorikawa GEO; Filho EXF; Noronha EF; Alves GSC; Togawa RC; Silva-Junior OB; Costa MMDC; Grynberg P; Miller RNG
    Front Bioeng Biotechnol; 2020; 8():564527. PubMed ID: 33123513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-routing of Sugar Catabolism Provides a Better Insight Into Fungal Flexibility in Using Plant Biomass-Derived Monomers as Substrates.
    Chroumpi T; Peng M; Markillie LM; Mitchell HD; Nicora CD; Hutchinson CM; Paurus V; Tolic N; Clendinen CS; Orr G; Baker SE; Mäkelä MR; de Vries RP
    Front Bioeng Biotechnol; 2021; 9():644216. PubMed ID: 33763411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic identification of CAZymes and transcription factors in the hypercellulolytic fungus Penicillium funiculosum NCIM1228 involved in lignocellulosic biomass degradation.
    Pasari N; Gupta M; Sinha T; Ogunmolu FE; Yazdani SS
    Biotechnol Biofuels Bioprod; 2023 Oct; 16(1):150. PubMed ID: 37794424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.