These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 30487787)
1. Quantitative Proteomics Reveals Common and Specific Responses of a Marine Diatom Chen XH; Li YY; Zhang H; Liu JL; Xie ZX; Lin L; Wang DZ Front Microbiol; 2018; 9():2761. PubMed ID: 30487787 [TBL] [Abstract][Full Text] [Related]
2. High light stress triggers distinct proteomic responses in the marine diatom Thalassiosira pseudonana. Dong HP; Dong YL; Cui L; Balamurugan S; Gao J; Lu SH; Jiang T BMC Genomics; 2016 Dec; 17(1):994. PubMed ID: 27919227 [TBL] [Abstract][Full Text] [Related]
3. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. Dyhrman ST; Jenkins BD; Rynearson TA; Saito MA; Mercier ML; Alexander H; Whitney LP; Drzewianowski A; Bulygin VV; Bertrand EM; Wu Z; Benitez-Nelson C; Heithoff A PLoS One; 2012; 7(3):e33768. PubMed ID: 22479440 [TBL] [Abstract][Full Text] [Related]
4. Lipidomics of Thalassiosira pseudonana under Phosphorus Stress Reveal Underlying Phospholipid Substitution Dynamics and Novel Diglycosylceramide Substitutes. Hunter JE; Brandsma J; Dymond MK; Koster G; Moore CM; Postle AD; Mills RA; Attard GS Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29305510 [TBL] [Abstract][Full Text] [Related]
5. Improving the genome and proteome annotations of the marine model diatom Chen XH; Yang MK; Li YY; Xie ZX; Zhang SF; Töpel M; Amin SA; Lin L; Ge F; Wang DZ Mar Life Sci Technol; 2023 Feb; 5(1):102-115. PubMed ID: 37073328 [TBL] [Abstract][Full Text] [Related]
7. Toxicity effects of zinc on two marine diatoms, under varying macronutrient environment. Anu PR; Bijoy Nandan S; Jayachandran PR; Don Xavier ND; Midhun AM; Mohan D Mar Environ Res; 2018 Nov; 142():275-285. PubMed ID: 30389236 [TBL] [Abstract][Full Text] [Related]
8. Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Thamatrakoln K; Korenovska O; Niheu AK; Bidle KD Environ Microbiol; 2012 Jan; 14(1):67-81. PubMed ID: 21453404 [TBL] [Abstract][Full Text] [Related]
9. The toxic mechanisms of BDE-47 to the marine diatom Thalassiosira pseudonana-a study based on multiple physiological processes. Zhao Y; Tang X; Quigg A; Lv M; Zhao Y Aquat Toxicol; 2019 Jul; 212():20-27. PubMed ID: 31039523 [TBL] [Abstract][Full Text] [Related]
10. Multi-omics strategies uncover the molecular mechanisms of nitrogen, phosphorus and potassium deficiency responses in Brassica napus. Fu Y; Mason AS; Song M; Ni X; Liu L; Shi J; Wang T; Xiao M; Zhang Y; Fu D; Yu H Cell Mol Biol Lett; 2023 Aug; 28(1):63. PubMed ID: 37543634 [TBL] [Abstract][Full Text] [Related]
11. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications. Marchetti A; Cassar N Geobiology; 2009 Sep; 7(4):419-31. PubMed ID: 19659798 [TBL] [Abstract][Full Text] [Related]
12. Physiological responses of the diatoms Thalassiosira weissflogii and Thalassiosira pseudonana to nitrogen starvation and high light. Qiao H; Zang S; Yan F; Xu Z; Wang L; Wu H Mar Environ Res; 2021 Apr; 166():105276. PubMed ID: 33578138 [TBL] [Abstract][Full Text] [Related]
13. Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Bidle KD; Bender SJ Eukaryot Cell; 2008 Feb; 7(2):223-36. PubMed ID: 18039944 [TBL] [Abstract][Full Text] [Related]
14. Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability. Thamatrakoln K; Bailleul B; Brown CM; Gorbunov MY; Kustka AB; Frada M; Joliot PA; Falkowski PG; Bidle KD Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20123-8. PubMed ID: 24277817 [TBL] [Abstract][Full Text] [Related]
15. Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms. Li G; Campbell DA Photosynth Res; 2017 Jan; 131(1):93-103. PubMed ID: 27566625 [TBL] [Abstract][Full Text] [Related]
16. Subcellular proteomics for determining iron-limited remodeling of plastids in the model diatom Thalassiosira pseudonana (Bacillariophyta). Gomes KM; Nunn BL; Chappell PD; Jenkins BD J Phycol; 2023 Oct; 59(5):1085-1099. PubMed ID: 37615442 [TBL] [Abstract][Full Text] [Related]
17. The Differential Responses of Coastal Diatoms to Ocean Acidification and Warming: A Comparison Between Cai T; Feng Y; Wang Y; Li T; Wang J; Li W; Zhou W Front Microbiol; 2022; 13():851149. PubMed ID: 35801105 [TBL] [Abstract][Full Text] [Related]
18. Comparative Proteomic Analysis Reveals New Insights Into the Common and Specific Metabolic Regulation of the Diatom Thangaraj S; Giordano M; Sun J Front Plant Sci; 2020; 11():578915. PubMed ID: 33224167 [TBL] [Abstract][Full Text] [Related]
19. Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen. Kettles NL; Kopriva S; Malin G PLoS One; 2014; 9(4):e94795. PubMed ID: 24733415 [TBL] [Abstract][Full Text] [Related]
20. Photosynthetic and molecular responses of the marine diatom Thalassiosira pseudonana to triphenyltin exposure. Yi AX; Leung PT; Leung KM Aquat Toxicol; 2014 Sep; 154():48-57. PubMed ID: 24858899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]