BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30488283)

  • 1. Improving ethanol yields in sugarcane molasses fermentation by engineering the high osmolarity glycerol pathway while maintaining osmotolerance in Saccharomyces cerevisiae.
    Jagtap RS; Mahajan DM; Mistry SR; Bilaiya M; Singh RK; Jain R
    Appl Microbiol Biotechnol; 2019 Jan; 103(2):1031-1042. PubMed ID: 30488283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae.
    Udom N; Chansongkrow P; Charoensawan V; Auesukaree C
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31101611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in S
    Papapetridis I; van Dijk M; van Maris AJA; Pronk JT
    Biotechnol Biofuels; 2017; 10():107. PubMed ID: 28450888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate.
    Yu KO; Kim SW; Han SO
    J Biotechnol; 2010 Oct; 150(2):209-14. PubMed ID: 20854852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Saccharomyces cerevisiae-Lactobacillus fermentum-Dekkera bruxellensis and feedstock on fuel ethanol fermentation.
    Bassi APG; Meneguello L; Paraluppi AL; Sanches BCP; Ceccato-Antonini SR
    Antonie Van Leeuwenhoek; 2018 Sep; 111(9):1661-1672. PubMed ID: 29488182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.
    Fernández-López CL; Torrestiana-Sánchez B; Salgado-Cervantes MA; García PG; Aguilar-Uscanga MG
    Bioprocess Biosyst Eng; 2012 May; 35(4):605-14. PubMed ID: 21971607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.
    Tao X; Zheng D; Liu T; Wang P; Zhao W; Zhu M; Jiang X; Zhao Y; Wu X
    PLoS One; 2012; 7(2):e31235. PubMed ID: 22363590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates.
    Pereira LF; Lucatti E; Basso LC; de Morais MA
    Antonie Van Leeuwenhoek; 2014 Mar; 105(3):481-9. PubMed ID: 24370978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.
    Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO
    Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid metabolism and MAP kinase signaling pathway play opposite roles in the regulation of ethanol production during fermentation of sugarcane molasses in budding yeast.
    Jiang L; Shen Y; Jiang Y; Mei W; Wei L; Feng J; Wei C; Liao X; Mo Y; Pan L; Wei M; Gu Y; Zheng J
    Genomics; 2024 Mar; 116(2):110811. PubMed ID: 38387766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stl1 transporter mediating the uptake of glycerol is not a weak point of Saccharomyces kudriavzevii's low osmotolerance.
    Zemančíková J; Papoušková K; Peréz-Torrado R; Querol A; Sychrová H
    Lett Appl Microbiol; 2019 Jan; 68(1):81-86. PubMed ID: 30382581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae.
    Hubmann G; Guillouet S; Nevoigt E
    Appl Environ Microbiol; 2011 Sep; 77(17):5857-67. PubMed ID: 21724879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.
    Kim SR; Skerker JM; Kong II; Kim H; Maurer MJ; Zhang GC; Peng D; Wei N; Arkin AP; Jin YS
    Metab Eng; 2017 Mar; 40():176-185. PubMed ID: 28216106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous ethanol production from sugarcane molasses using a newly designed combined bioreactor system by immobilized Saccharomyces cerevisiae.
    Xu W; Liang L; Song Z; Zhu M
    Biotechnol Appl Biochem; 2014; 61(3):289-96. PubMed ID: 24164318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
    Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast selection for fuel ethanol production in Brazil.
    Basso LC; de Amorim HV; de Oliveira AJ; Lopes ML
    FEMS Yeast Res; 2008 Nov; 8(7):1155-63. PubMed ID: 18752628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering.
    Hubmann G; Foulquié-Moreno MR; Nevoigt E; Duitama J; Meurens N; Pais TM; Mathé L; Saerens S; Nguyen HT; Swinnen S; Verstrepen KJ; Concilio L; de Troostembergh JC; Thevelein JM
    Metab Eng; 2013 May; 17():68-81. PubMed ID: 23518242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.