BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30488393)

  • 21. Optimized continuous flow electrophoresis.
    Weber G; Bocek P
    Electrophoresis; 1996 Dec; 17(12):1906-10. PubMed ID: 9034773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.
    Ge Z; Wang W; Yang C
    Anal Chim Acta; 2015 Feb; 858():91-7. PubMed ID: 25597807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mobilization in two-step capillary isoelectric focusing: Concepts assessed by computer simulation.
    Thormann W; Mosher RA
    Electrophoresis; 2024 Apr; 45(7-8):618-638. PubMed ID: 38115749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coupled concentration polarization and electroosmotic circulation near micro/nanointerfaces: Taylor-Aris model of hydrodynamic dispersion and limits of its applicability.
    Yaroshchuk A; Zholkovskiy E; Pogodin S; Baulin V
    Langmuir; 2011 Sep; 27(18):11710-21. PubMed ID: 21812464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating peak dispersion in free-flow counterflow gradient focusing due to electroosmotic flow.
    Courtney M; Glawdel T; Ren CL
    Electrophoresis; 2023 Apr; 44(7-8):646-655. PubMed ID: 36502493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Joule heating in dispersive mixing effects in electrophoretic cells: convective-diffusive transport aspects.
    Bosse MA; Arce P
    Electrophoresis; 2000 Mar; 21(5):1026-33. PubMed ID: 10768790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 50-Fold Reduction of Separation Time in Open-Channel Hydrodynamic Chromatography via Lateral Vortices.
    Biagioni V; Cerbelli S
    Anal Chem; 2022 Jul; 94(27):9872-9879. PubMed ID: 35765941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous separation of high molecular weight compounds using a microliter volume free-flow electrophoresis microstructure.
    Raymond DE; Manz A; Widmer HM
    Anal Chem; 1996 Aug; 68(15):2515-22. PubMed ID: 21619197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: a closer look.
    Petersen NJ; Nikolajsen RP; Mogensen KB; Kutter JP
    Electrophoresis; 2004 Jan; 25(2):253-69. PubMed ID: 14743478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of single-isomer, multiply charge chiral resolving agents for the continuous, preparative-scale electrophoretic separation of enantiomers based on the principle of equal-but-opposite analyte mobilities.
    Glukhovskiy P; Vigh G
    Electrophoresis; 2000 Jun; 21(10):2010-5. PubMed ID: 10879960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of Joule heating in dispersive mixing effects in electrophoretic cells: hydrodynamic considerations.
    Bosse MA; Arce P
    Electrophoresis; 2000 Mar; 21(5):1018-25. PubMed ID: 10768789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and minimization of band broadening in DNA electrohydrodynamic migration for enhanced size separation.
    Teillet J; Martinez Q; Tijunelyte I; Chami B; Bancaud A
    Soft Matter; 2020 Jun; 16(24):5640-5649. PubMed ID: 32510064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparative free-flow electrofocusing in a vortex-stabilized annulus.
    Ivory CF
    Electrophoresis; 2004 Jan; 25(2):360-74. PubMed ID: 14743489
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: an interplay between theory and practice.
    Hjertén S
    Electrophoresis; 1990 Sep; 11(9):665-90. PubMed ID: 2257839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Band Broadening Theories in Capillary Electrophoresis.
    Ghosal S
    Methods Mol Biol; 2019; 1906():143-166. PubMed ID: 30488392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Field gradient electrophoresis.
    Warnick KF; Francom SJ; Humble PH; Kelly RT; Woolley AT; Lee ML; Tolley HD
    Electrophoresis; 2005 Jan; 26(2):405-14. PubMed ID: 15657888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.