BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30488397)

  • 1. Microchip-Based Electrophoretic Separations with a Pressure-Driven Backflow.
    Xia L; Dutta D
    Methods Mol Biol; 2019; 1906():239-249. PubMed ID: 30488397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic flow counterbalanced capillary electrophoresis.
    Xia L; Dutta D
    Analyst; 2013 Apr; 138(7):2126-33. PubMed ID: 23420375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microchip device for enhancing capillary zone electrophoresis using pressure-driven backflow.
    Xia L; Dutta D
    Anal Chem; 2012 Nov; 84(22):10058-63. PubMed ID: 23092536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of an electrokinetic backflow for enhancing pressure-driven charge based separations in sub-micrometer deep channels.
    Xia L; Deb R; Yanagisawa N; Dutta D
    Anal Chim Acta; 2022 Nov; 1233():340476. PubMed ID: 36283775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sample Preconcentration Protocols in Microfluidic Electrophoresis.
    Kitagawa F; Otsuka K
    Methods Mol Biol; 2019; 1906():65-78. PubMed ID: 30488385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Chip Pressure Generation for Driving Liquid Phase Separations in Nanochannels.
    Xia L; Choi C; Kothekar SC; Dutta D
    Anal Chem; 2016 Jan; 88(1):781-8. PubMed ID: 26636608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of microfluidic chip with integrated optics for electrophoretic separations of proteins.
    Vieillard J; Mazurczyk R; Morin C; Hannes B; Chevolot Y; Desbène PL; Krawczyk S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jan; 845(2):218-25. PubMed ID: 16962832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers.
    Sahore V; Kumar S; Rogers CI; Jensen JK; Sonker M; Woolley AT
    Anal Bioanal Chem; 2016 Jan; 408(2):599-607. PubMed ID: 26537925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing separation in short-capillary electrophoresis via pressure-driven backflow.
    Tian M; Wang Y; Mohamed AC; Guo L; Yang L
    Electrophoresis; 2015 Jul; 36(14):1549-54. PubMed ID: 25826429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction in sample injection bias using pressure gradients generated on chip.
    Liu Y; Xia L; Dutta D
    Electrophoresis; 2021 Apr; 42(7-8):983-990. PubMed ID: 33569844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filmy channel microchip with amperometric detection.
    Wang W; Fu FF; Xu X; Lin JM; Chen G
    Electrophoresis; 2009 Nov; 30(22):3932-8. PubMed ID: 19885881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip pumping for pressure mobilization of the focused zones following microchip isoelectric focusing.
    Guillo C; Karlinsey JM; Landers JP
    Lab Chip; 2007 Jan; 7(1):112-8. PubMed ID: 17180213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet-interfaced microchip and capillary electrophoretic separations.
    Niu X; Pereira F; Edel JB; de Mello AJ
    Anal Chem; 2013 Sep; 85(18):8654-60. PubMed ID: 23957576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure generation at the junction of two microchannels with different depths.
    Yanagisawa N; Dutta D
    Electrophoresis; 2010 Jun; 31(12):2080-8. PubMed ID: 20503204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated plastic microchip for enhancing electrophoretic separation using tunable pressure-driven backflows.
    Liu Y; Xia L; Xiao X; Li G
    Electrophoresis; 2022 Apr; 43(7-8):892-900. PubMed ID: 35020208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic device for performing pressure-driven separations.
    Dutta D; Ramsey JM
    Lab Chip; 2011 Sep; 11(18):3081-8. PubMed ID: 21789335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic device for integrated restriction digestion reaction and resulting DNA fragment analysis.
    Xie H; Li B; Zhong R; Qin J; Zhu Y; Lin B
    Electrophoresis; 2008 Dec; 29(24):4956-63. PubMed ID: 19130575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification.
    Lin CH; Lee GB; Fu LM; Chen SH
    Biosens Bioelectron; 2004 Jul; 20(1):83-90. PubMed ID: 15142580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.