These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 30488639)

  • 1. A passive microfluidic device for continuous microparticle enrichment.
    Fan LL; Zhu XL; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2019 Mar; 40(6):1000-1009. PubMed ID: 30488639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced viscoelastic focusing of particle in microchannel.
    Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic-inertial separation of microparticle in a gradually contracted microchannel.
    Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L
    Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory inertial focusing in infinite microchannels.
    Mutlu BR; Edd JF; Toner M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7682-7687. PubMed ID: 29991599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spiral microchannels with concave cross-section for enhanced cancer cell inertial separation.
    Zhang X; Zheng Z; Gu Q; He Y; Huang D; Liu Y; Mi J; Oseyemi AE
    Mikrochim Acta; 2024 Sep; 191(10):634. PubMed ID: 39347843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dean-flow-coupled interfacial viscoelastic fluid for microparticle separation applied in a cell smear method.
    Shi X; Liu L; Cao W; Zhu G; Tan W
    Analyst; 2019 Oct; 144(20):5934-5946. PubMed ID: 31483419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel.
    Kemna EW; Schoeman RM; Wolbers F; Vermes I; Weitz DA; van den Berg A
    Lab Chip; 2012 Aug; 12(16):2881-7. PubMed ID: 22688131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic particle sorting utilizing inertial lift force.
    Nieuwstadt HA; Seda R; Li DS; Fowlkes JB; Bull JL
    Biomed Microdevices; 2011 Feb; 13(1):97-105. PubMed ID: 20865451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A resettable dynamic microarray device.
    Iwai K; Tan WH; Ishihara H; Takeuchi S
    Biomed Microdevices; 2011 Dec; 13(6):1089-94. PubMed ID: 21800145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clogging-free continuous operation with whole blood in a radial pillar device (RAPID).
    Mehendale N; Sharma O; Pandey S; Paul D
    Biomed Microdevices; 2018 Aug; 20(3):75. PubMed ID: 30120596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.