These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30488698)

  • 41. Improvements in Glucose Sensitivity and Stability of Trichoderma reesei β-Glucosidase Using Site-Directed Mutagenesis.
    Guo B; Amano Y; Nozaki K
    PLoS One; 2016; 11(1):e0147301. PubMed ID: 26790148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of a novel recombinant halophilic β-glucosidase of Trichoderma harzianum derived from Hainan mangrove.
    Sun N; Liu X; Zhang B; Wang X; Na W; Tan Z; Li X; Guan Q
    BMC Microbiol; 2022 Jul; 22(1):185. PubMed ID: 35902815
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of the family 1 beta-glucosidase from Streptomyces sp: catalytic residues and kinetic studies.
    Vallmitjana M; Ferrer-Navarro M; Planell R; Abel M; Ausín C; Querol E; Planas A; Pérez-Pons JA
    Biochemistry; 2001 May; 40(20):5975-82. PubMed ID: 11352732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Novel Glucose-Tolerant GH1 β-Glucosidase and Improvement of Its Glucose Tolerance Using Site-Directed Mutation.
    Sun J; Wang W; Ying Y; Hao J
    Appl Biochem Biotechnol; 2020 Nov; 192(3):999-1015. PubMed ID: 32621133
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mutations in the substrate entrance region of β-glucosidase from Trichoderma reesei improve enzyme activity and thermostability.
    Lee HL; Chang CK; Jeng WY; Wang AH; Liang PH
    Protein Eng Des Sel; 2012 Nov; 25(11):733-40. PubMed ID: 23077275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved thermostability of a metagenomic glucose-tolerant β-glycosidase based on its X-ray crystal structure.
    Matsuzawa T; Watanabe M; Yaoi K
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8353-8363. PubMed ID: 29063172
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of a glucose tolerant β-glucosidase from Aspergillus unguis with high potential as a blend-in for biomass hydrolyzing enzyme cocktails.
    Kooloth Valappil P; Rajasree KP; Abraham A; Christopher M; Sukumaran RK
    Biotechnol Lett; 2019 Oct; 41(10):1201-1211. PubMed ID: 31489522
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus.
    Parry NJ; Beever DE; Owen E; Vandenberghe I; Van Beeumen J; Bhat MK
    Biochem J; 2001 Jan; 353(Pt 1):117-127. PubMed ID: 11115405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identifying and characterizing the most significant β-glucosidase of the novel species Aspergillus saccharolyticus.
    Sørensen A; Ahring BK; Lübeck M; Ubhayasekera W; Bruno KS; Culley DE; Lübeck PS
    Can J Microbiol; 2012 Sep; 58(9):1035-46. PubMed ID: 22906186
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production.
    Hardiman E; Gibbs M; Reeves R; Bergquist P
    Appl Biochem Biotechnol; 2010 May; 161(1-8):301-12. PubMed ID: 19834652
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and characterization of three β-glycosidases exhibiting high glucose tolerance from Aspergillus niger ASKU28.
    Thongpoo P; Srisomsap C; Chokchaichamnankit D; Kitpreechavanich V; Svasti J; Kongsaeree PT
    Biosci Biotechnol Biochem; 2014; 78(7):1167-76. PubMed ID: 25229852
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of a new multifunctional beta-glucosidase from Musca domestica.
    Zhang S; Huang J; Hu R; Guo G; Shang X; Wu J
    Biotechnol Lett; 2017 Aug; 39(8):1219-1227. PubMed ID: 28503710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation.
    Machado ADS; Ferraz A
    Bioresour Technol; 2017 Feb; 225():17-22. PubMed ID: 27875764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel thermostable and glucose-tolerant β-glucosidase from Fervidobacterium islandicum.
    Jabbour D; Klippel B; Antranikian G
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):1947-56. PubMed ID: 22146852
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Utilization of Bacillus subtilis cells displaying a glucose-tolerant β-glucosidase for whole-cell biocatalysis.
    Gupta R; Noronha SB
    Enzyme Microb Technol; 2020 Jan; 132():109444. PubMed ID: 31731952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11.
    Zhou C; Xue Y; Ma Y
    BMC Biotechnol; 2015 Oct; 15():97. PubMed ID: 26490269
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose.
    Bian J; Peng F; Peng XP; Xiao X; Peng P; Xu F; Sun RC
    Carbohydr Polym; 2014 Jan; 100():211-7. PubMed ID: 24188856
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression and characterization of a novel highly glucose-tolerant β-glucosidase from a soil metagenome.
    Lu J; Du L; Wei Y; Hu Y; Huang R
    Acta Biochim Biophys Sin (Shanghai); 2013 Aug; 45(8):664-73. PubMed ID: 23752618
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel β-glucosidase from a hot-spring metagenome shows elevated thermal stability and tolerance to glucose and ethanol.
    Kaushal G; Rai AK; Singh SP
    Enzyme Microb Technol; 2021 Apr; 145():109764. PubMed ID: 33750538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.