BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30488757)

  • 1. Comparative genomics of HORMA domain-containing proteins in prokaryotes and eukaryotes.
    Almutairi ZM
    Cell Cycle; 2018; 17(23):2531-2546. PubMed ID: 30488757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolutionary repertoires of the eukaryotic-type ABC transporters in terms of the phylogeny of ATP-binding domains in eukaryotes and prokaryotes.
    Igarashi Y; Aoki KF; Mamitsuka H; Kuma K; Kanehisa M
    Mol Biol Evol; 2004 Nov; 21(11):2149-60. PubMed ID: 15297601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The HORMA domain: an evolutionarily conserved domain discovered in chromatin-associated proteins, has unanticipated diverse functions.
    Muniyappa K; Kshirsagar R; Ghodke I
    Gene; 2014 Jul; 545(2):194-7. PubMed ID: 24814187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Genomics for Prokaryotes.
    Setubal JC; Almeida NF; Wattam AR
    Methods Mol Biol; 2018; 1704():55-78. PubMed ID: 29277863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The COG database: an updated version includes eukaryotes.
    Tatusov RL; Fedorova ND; Jackson JD; Jacobs AR; Kiryutin B; Koonin EV; Krylov DM; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Smirnov S; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    BMC Bioinformatics; 2003 Sep; 4():41. PubMed ID: 12969510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2.
    West AMV; Komives EA; Corbett KD
    Nucleic Acids Res; 2018 Jan; 46(1):279-292. PubMed ID: 29186573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein phylogenies and signature sequences: evolutionary relationships within prokaryotes and between prokaryotes and eukaryotes.
    Gupta RS
    Antonie Van Leeuwenhoek; 1997 Jul; 72(1):49-61. PubMed ID: 9296263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified base-binding EVE and DCD domains: striking diversity of genomic contexts in prokaryotes and predicted involvement in a variety of cellular processes.
    Bell RT; Wolf YI; Koonin EV
    BMC Biol; 2020 Nov; 18(1):159. PubMed ID: 33148243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide survey of prokaryotic serine proteases: analysis of distribution and domain architectures of five serine protease families in prokaryotes.
    Tripathi LP; Sowdhamini R
    BMC Genomics; 2008 Nov; 9():549. PubMed ID: 19019219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes.
    Andersson JO; Roger AJ
    BMC Evol Biol; 2003 Jun; 3():14. PubMed ID: 12820901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative assessment of performance and genome dependence among phylogenetic profiling methods.
    Snitkin ES; Gustafson AM; Mellor J; Wu J; DeLisi C
    BMC Bioinformatics; 2006 Sep; 7():420. PubMed ID: 17005048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and biochemical insights into the interaction mechanism underlying HORMAD1 and its partner proteins.
    Wang H; Xie R; Niu F; Yang Q; An L; Wu C; Liu X; Yang X
    Structure; 2023 Dec; 31(12):1578-1588.e3. PubMed ID: 37794593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and evolution of ubiquitin and ubiquitin-related domains.
    Burroughs AM; Iyer LM; Aravind L
    Methods Mol Biol; 2012; 832():15-63. PubMed ID: 22350875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs.
    Dong JH; Wen JF; Tian HF
    Gene; 2007 Jul; 396(1):116-24. PubMed ID: 17449198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome trees constructed using five different approaches suggest new major bacterial clades.
    Wolf YI; Rogozin IB; Grishin NV; Tatusov RL; Koonin EV
    BMC Evol Biol; 2001 Oct; 1():8. PubMed ID: 11734060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation.
    Suzuki SW; Yamamoto H; Oikawa Y; Kondo-Kakuta C; Kimura Y; Hirano H; Ohsumi Y
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3350-5. PubMed ID: 25737544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system.
    Aravind L; Koonin EV
    Genome Res; 2001 Aug; 11(8):1365-74. PubMed ID: 11483577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multifaceted roles of the HORMA domain in cellular signaling.
    Rosenberg SC; Corbett KD
    J Cell Biol; 2015 Nov; 211(4):745-55. PubMed ID: 26598612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural history of eukaryotic DNA methylation systems.
    Iyer LM; Abhiman S; Aravind L
    Prog Mol Biol Transl Sci; 2011; 101():25-104. PubMed ID: 21507349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms.
    Gupta RS
    Mol Microbiol; 1998 Aug; 29(3):695-707. PubMed ID: 9723910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.