These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3048887)

  • 1. Enzymes of nucleotide metabolism: the significance of subunit size and polymer size for biological function and regulatory properties.
    Traut TW
    CRC Crit Rev Biochem; 1988; 23(2):121-69. PubMed ID: 3048887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation of enzyme oligomers: a mechanism for allosteric regulation.
    Traut TW
    Crit Rev Biochem Mol Biol; 1994; 29(2):125-63. PubMed ID: 8026214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The distributions of subunit numbers and subunit sizes of enzymes: a study of the products of 100 human gene loci.
    Hopkinson DA; Edwards YH; Harris H
    Ann Hum Genet; 1976 May; 39(4):383-411. PubMed ID: 782337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of biological macromolecules.
    Perham RN
    Philos Trans R Soc Lond B Biol Sci; 1975 Nov; 272(915):123-36. PubMed ID: 1808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the physical and functional properties of the 48-subunit native molecule and the 24- and 12-subunit dissociation intermediates of Limulus polyphemus hemocyanin.
    Brenowitz M; Bonaventura C; Bonaventura J
    Biochemistry; 1984 Feb; 23(5):879-88. PubMed ID: 25856834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.
    Wales ME; Madison LL; Glaser SS; Wild JR
    J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme complexity in intermediary metabolism.
    Van Schaftingen E; Veiga-da-Cunha M; Linster CL
    J Inherit Metab Dis; 2015 Jul; 38(4):721-7. PubMed ID: 25700988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between subunit size and number of rare electrophoretic alleles in human enzymes.
    Eanes WF; Koehn RK
    Biochem Genet; 1978 Oct; 16(9-10):971-85. PubMed ID: 743198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A broad view of scaffolding suggests that scaffolding proteins can actively control regulation and signaling of multienzyme complexes through allostery.
    Nussinov R; Ma B; Tsai CJ
    Biochim Biophys Acta; 2013 May; 1834(5):820-9. PubMed ID: 23291467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An asparagine residue mediates intramolecular communication in nucleotide-regulated pyrophosphatase.
    Anashkin VA; Salminen A; Vorobjeva NN; Lahti R; Baykov AA
    Biochem J; 2016 Jul; 473(14):2097-107. PubMed ID: 27208172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A historical overview of protein kinases and their targeted small molecule inhibitors.
    Roskoski R
    Pharmacol Res; 2015 Oct; 100():1-23. PubMed ID: 26207888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide ligands protect the inter-domain regions of the multifunctional polypeptide CAD against limited proteolysis, and also stabilize the thermolabile part-reactions of the carbamoyl-phosphate synthase II domains within the CAD polypeptide.
    Carrey EA
    Biochem J; 1986 Jun; 236(2):327-35. PubMed ID: 3638965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the large subunit of class Ib ribonucleotide reductase from Salmonella typhimurium and its complexes with allosteric effectors.
    Uppsten M; Färnegårdh M; Jordan A; Eliasson R; Eklund H; Uhlin U
    J Mol Biol; 2003 Jun; 330(1):87-97. PubMed ID: 12818204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic enzymes that bind RNA: yet another level of cellular regulatory network?
    Cieśla J
    Acta Biochim Pol; 2006; 53(1):11-32. PubMed ID: 16410835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of multifunctional enzymes in metabolic pathway analysis.
    Schuster S; Zevedei-Oancea I
    Biophys Chem; 2002 Sep; 99(1):63-75. PubMed ID: 12223240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure.
    Baker DP; Fetler L; Vachette P; Kantrowitz ER
    Protein Sci; 1996 Nov; 5(11):2276-86. PubMed ID: 8931146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of the nucleotide and metal-phosphate binding sites in cAMP-dependent protein kinase.
    Herberg FW; Doyle ML; Cox S; Taylor SS
    Biochemistry; 1999 May; 38(19):6352-60. PubMed ID: 10320366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The amidotransferase family of enzymes: molecular machines for the production and delivery of ammonia.
    Raushel FM; Thoden JB; Holden HM
    Biochemistry; 1999 Jun; 38(25):7891-9. PubMed ID: 10387030
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.