BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3048898)

  • 21. Myocardial high energy phosphate metabolism during ventricular fibrillation with total circulatory arrest.
    Neumar RW; Brown CG; Robitaille PM; Altschuld RA
    Resuscitation; 1990 Jun; 19(3):199-226. PubMed ID: 2164245
    [No Abstract]   [Full Text] [Related]  

  • 22. The relationships of high energy phosphates, tissue pH, and regional blood flow to diastolic distensibility in the ischemic dog myocardium.
    Momomura S; Ingwall JS; Parker JA; Sahagian P; Ferguson JJ; Grossman W
    Circ Res; 1985 Dec; 57(6):822-35. PubMed ID: 4064257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of TA-3090, a new calcium channel blocker, on myocardial substrate utilization in ischemic and nonischemic isolated working fatty acid-perfused rat hearts.
    Davies NJ; McVeigh JJ; Lopaschuk GD
    Circ Res; 1991 Mar; 68(3):807-17. PubMed ID: 1742868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Importance of metabolic inhibition and cellular pH in mediating preconditioning contractile and metabolic effects in rat hearts.
    de Albuquerque CP; Gerstenblith G; Weiss RG
    Circ Res; 1994 Jan; 74(1):139-50. PubMed ID: 8261587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of prearrest factors on the preservation of left ventricular function during cardiopulmonary bypass.
    Butchart EG; McEnany MT; Strich G; Sbokos C; Austen WG
    J Thorac Cardiovasc Surg; 1980 Jun; 79(6):812-21. PubMed ID: 7374196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP synthesis during low-flow ischemia: influence of increased glycolytic substrate.
    Cave AC; Ingwall JS; Friedrich J; Liao R; Saupe KW; Apstein CS; Eberli FR
    Circulation; 2000 May; 101(17):2090-6. PubMed ID: 10790352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effects of dichloroacetate in the ischemic heart. Analysis of hemodynamics, myocardial energy metabolism and myocardial pH].
    Mizushima M
    Hokkaido Igaku Zasshi; 1990 May; 65(3):298-310. PubMed ID: 2379912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. delta-Opioid-induced pharmacologic myocardial hibernation during cardiopulmonary resuscitation.
    Fang X; Tang W; Sun S; Weil MH
    Crit Care Med; 2006 Dec; 34(12 Suppl):S486-9. PubMed ID: 17114982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of high arterial oxygen tension on function, blood flow distribution, and metabolism in ischemic myocardium.
    Cason BA; Wisneski JA; Neese RA; Stanley WC; Hickey RF; Shnier CB; Gertz EW
    Circulation; 1992 Feb; 85(2):828-38. PubMed ID: 1735173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glucose delivery is a major determinant of glucose utilisation in the ischemic myocardium with a residual coronary flow.
    King LM; Opie LH
    Cardiovasc Res; 1998 Aug; 39(2):381-92. PubMed ID: 9798523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic products and myocardial ischemia.
    Neely JR; Feuvray D
    Am J Pathol; 1981 Feb; 102(2):282-91. PubMed ID: 7008624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alterations in energy metabolism and ultrastructure upon reperfusion of the ischemic myocardium after coronary occlusion.
    Puri PS; Varley KG; Kim SW; Barwinsky J; Cohen M; Dhalla NS
    Am J Cardiol; 1975 Aug; 36(2):234-43. PubMed ID: 1080352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reperfusion of hibernating myocardium: contractile function, high-energy phosphate content, and myocyte injury after 3 hours of sublethal ischemia and 3 hours of reperfusion in the canine model.
    Przyklenk K; Bauer B; Kloner RA
    Am Heart J; 1992 Mar; 123(3):575-88. PubMed ID: 1539508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of regional ischemia on metabolism of glucose and fatty acids. Relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia.
    Opie LH
    Circ Res; 1976 May; 38(5 Suppl 1):I52-74. PubMed ID: 5202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The contraction state of myofibrils during global ischemia and after reperfusion following different forms of cardiac arrest. Correlation with metabolic parameters in the canine heart.
    Schmiedl A; Schnabel PA; Richter J; Gebhard MM; Bretschneider HJ
    Pathol Res Pract; 1994 May; 190(5):482-92. PubMed ID: 7991468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Chronic myocardial ischemia--hibernating myocardium: characteristics and limits].
    Heusch G; Schulz R
    Z Kardiol; 1993; 82 Suppl 5():133-41. PubMed ID: 8154154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Relationship between anaerobic energy formation and myocardial contractile function in disturbed cardiac blood supply].
    Frol'kis RA; Orlova NN; LikhtenshteÄ­n IE; Garkusha LN
    Biull Eksp Biol Med; 1982 Aug; 94(8):16-8. PubMed ID: 7126848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cerebral oxidative metabolism during hypothermia and circulatory arrest in newborn dogs.
    Yager JY; Brucklacher RM; Mujsce DJ; Vannucci RC
    Pediatr Res; 1992 Nov; 32(5):547-52. PubMed ID: 1480456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of thromboxane A2 synthetase inhibitor on metabolism and contractility in ischemic reperfused rabbit heart.
    Kawabata H; Ryomoto T; Katori R
    Angiology; 1997 Aug; 48(8):689-97. PubMed ID: 9269138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphocreatine restores high-energy phosphates in ischemic myocardium: implication for off-pump cardiac revascularization.
    Prabhakar G; Vona-Davis L; Murray D; Lakhani P; Murray G
    J Am Coll Surg; 2003 Nov; 197(5):786-91. PubMed ID: 14585415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.