These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30489015)

  • 21. Recent Advances in AIEgens for Metal Ion Biosensing and Bioimaging.
    Li Y; Zhong H; Huang Y; Zhao R
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31888126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers.
    Jolly P; Estrela P; Ladomery M
    Essays Biochem; 2016 Jun; 60(1):27-35. PubMed ID: 27365033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in sugar-based AIE luminogens and their applications in sensing and imaging.
    Liu GJ; Zhang JD; Zhou W; Feng GL; Xing GW
    Chem Commun (Camb); 2024 Oct; 60(83):11899-11915. PubMed ID: 39323243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions: implications for selection, design, and applications of signaling aptamers and signaling deoxyribozymes.
    Rupcich N; Chiuman W; Nutiu R; Mei S; Flora KK; Li Y; Brennan JD
    J Am Chem Soc; 2006 Jan; 128(3):780-90. PubMed ID: 16417367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzyme-Responsive Bioprobes Based on the Mechanism of Aggregation-Induced Emission.
    Shi J; Li Y; Li Q; Li Z
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12278-12294. PubMed ID: 29231713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-/Chemosensors and Imaging with Aggregation-Induced Emission Luminogens.
    Zhan C; You X; Zhang G; Zhang D
    Chem Rec; 2016 Aug; 16(4):2142-60. PubMed ID: 27427427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosensors for the Detection of Enzymes Based on Aggregation-Induced Emission.
    Gao F; Liu G; Qiao M; Li Y; Yi X
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ECHO probes: a concept of fluorescence control for practical nucleic acid sensing.
    Okamoto A
    Chem Soc Rev; 2011 Dec; 40(12):5815-28. PubMed ID: 21660343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mix-and-match nanobiosensor design: Logical and spatial programming of biosensors using self-assembled DNA nanostructures.
    Liu Y; Kumar S; Taylor RE
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Nov; 10(6):e1518. PubMed ID: 29633568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-channel detection of metallothioneins and mercury based on a mercury-mediated aptamer beacon using thymidine-mercury-thymidine complex as a quencher.
    Chen SH; Wang YS; Chen YS; Tang X; Cao JX; Li MH; Wang XF; Zhu YF; Huang YQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():315-21. PubMed ID: 26143324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-walled carbon nanotube as an effective quencher.
    Zhu Z; Yang R; You M; Zhang X; Wu Y; Tan W
    Anal Bioanal Chem; 2010 Jan; 396(1):73-83. PubMed ID: 19898820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleic acid based molecular devices.
    Krishnan Y; Simmel FC
    Angew Chem Int Ed Engl; 2011 Mar; 50(14):3124-56. PubMed ID: 21432950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo Applications.
    Zhang J; Lan T; Lu Y
    Adv Healthc Mater; 2019 Mar; 8(6):e1801158. PubMed ID: 30725526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence Polarization Based Nucleic Acid Testing for Rapid and Cost-Effective Diagnosis of Infectious Disease.
    Park KS; Charles RC; Ryan ET; Weissleder R; Lee H
    Chemistry; 2015 Nov; 21(46):16359-63. PubMed ID: 26420633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A conformation-induced fluorescence method for microRNA detection.
    Aw SS; Tang MX; Teo YN; Cohen SM
    Nucleic Acids Res; 2016 Jun; 44(10):e92. PubMed ID: 26951376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA assay based on Nanoceria as Fluorescence Quenchers (NanoCeracQ DNA assay).
    Bülbül G; Hayat A; Mustafa F; Andreescu S
    Sci Rep; 2018 Feb; 8(1):2426. PubMed ID: 29402996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal ion detection using functional nucleic acids and nanomaterials.
    Huang J; Su X; Li Z
    Biosens Bioelectron; 2017 Oct; 96():127-139. PubMed ID: 28478384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence anisotropy: from single molecules to live cells.
    Gradinaru CC; Marushchak DO; Samim M; Krull UJ
    Analyst; 2010 Mar; 135(3):452-9. PubMed ID: 20174695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors.
    Lung Khung Y; Narducci D
    Biosens Bioelectron; 2013 Dec; 50():278-93. PubMed ID: 23872609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.