These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 3049163)
1. The herbicidally active experimental compound Hoe 704 is a potent inhibitor of the enzyme acetolactate reductoisomerase. Schulz A; Spönemann P; Köcher H; Wengenmayer F FEBS Lett; 1988 Oct; 238(2):375-8. PubMed ID: 3049163 [TBL] [Abstract][Full Text] [Related]
2. Interactions of plant acetohydroxy acid isomeroreductase with reaction intermediate analogues: correlation of the slow, competitive, inhibition kinetics of enzyme activity and herbicidal effects. Dumas R; Cornillon-Bertrand C; Guigue-Talet P; Genix P; Douce R; Job D Biochem J; 1994 Aug; 301 ( Pt 3)(Pt 3):813-20. PubMed ID: 8053906 [TBL] [Abstract][Full Text] [Related]
3. Regulation of branched-chain amino acid biosynthesis by alpha-acetolactate decarboxylase in Streptococcus thermophilus. Monnet C; Nardi M; Hols P; Gulea M; Corrieu G; Monnet V Lett Appl Microbiol; 2003; 36(6):399-405. PubMed ID: 12753249 [TBL] [Abstract][Full Text] [Related]
4. Branched-chain amino acid biosynthesis inhibitors: herbicide efficacy is associated with an induced carbon-nitrogen imbalance. Zabalza A; Zulet A; Gil-Monreal M; Igal M; Royuela M J Plant Physiol; 2013 Jun; 170(9):814-21. PubMed ID: 23394788 [TBL] [Abstract][Full Text] [Related]
5. Fermentative metabolism is induced by inhibiting different enzymes of the branched-chain amino acid biosynthesis pathway in pea plants. Zabalza A; González EM; Arrese-Igor C; Royuela M J Agric Food Chem; 2005 Sep; 53(19):7486-93. PubMed ID: 16159177 [TBL] [Abstract][Full Text] [Related]
6. Metabolic effects of inhibitors of two enzymes of the branched-chain amino acid pathway in Salmonella typhimurium. Epelbaum S; Chipman DM; Barak Z J Bacteriol; 1996 Feb; 178(4):1187-96. PubMed ID: 8576056 [TBL] [Abstract][Full Text] [Related]
7. Isolation and kinetic properties of acetohydroxy acid isomeroreductase from spinach (Spinacia oleracea) chloroplasts overexpressed in Escherichia coli. Dumas R; Job D; Ortholand JY; Emeric G; Greiner A; Douce R Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):865-74. PubMed ID: 1472001 [TBL] [Abstract][Full Text] [Related]
8. Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. Goupil-Feuillerat N; Cocaign-Bousquet M; Godon JJ; Ehrlich SD; Renault P J Bacteriol; 1997 Oct; 179(20):6285-93. PubMed ID: 9335274 [TBL] [Abstract][Full Text] [Related]
9. Purification and characterization of acetohydroxyacid reductoisomerase from spinach chloroplasts. Dumas R; Joyard J; Douce R Biochem J; 1989 Sep; 262(3):971-6. PubMed ID: 2590180 [TBL] [Abstract][Full Text] [Related]
10. Stereospecificity of the reductoisomerase-catalyzed step in the pathway of biosynthesis of valine and leucine. Sylvester SR; Stevens CM Biochemistry; 1979 Oct; 18(21):4529-31. PubMed ID: 387071 [No Abstract] [Full Text] [Related]
11. Role of exogenously supplied ferulic and p-coumaric acids in mimicking the mode of action of acetolactate synthase inhibiting herbicides. Orcaray L; Igal M; Zabalza A; Royuela M J Agric Food Chem; 2011 Sep; 59(18):10162-8. PubMed ID: 21870840 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of ketol acid reductoisomerase--steady-state analysis and metal ion requirement. Chunduru SK; Mrachko GT; Calvo KC Biochemistry; 1989 Jan; 28(2):486-93. PubMed ID: 2653423 [TBL] [Abstract][Full Text] [Related]
13. Acetohydroxyacid synthases: evolution, structure, and function. Liu Y; Li Y; Wang X Appl Microbiol Biotechnol; 2016 Oct; 100(20):8633-49. PubMed ID: 27576495 [TBL] [Abstract][Full Text] [Related]
14. The influence of budA deletion on glucose metabolism related in 2,3-butanediol production by Klebsiella pneumoniae. Kim B; Lee S; Yang J; Jeong D; Shin SH; Kook JH; Yang KS; Lee J Enzyme Microb Technol; 2015 Jun; 73-74():1-8. PubMed ID: 26002498 [TBL] [Abstract][Full Text] [Related]
15. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. McCourt JA; Duggleby RG Amino Acids; 2006 Sep; 31(2):173-210. PubMed ID: 16699828 [TBL] [Abstract][Full Text] [Related]
16. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I. Belenky I; Steinmetz A; Vyazmensky M; Barak Z; Tittmann K; Chipman DM FEBS J; 2012 Jun; 279(11):1967-79. PubMed ID: 22443469 [TBL] [Abstract][Full Text] [Related]
17. Mechanism and Inhibitor Exploration with Binuclear Mg Ketol-Acid Reductoisomerase: Targeting the Biosynthetic Pathway of Branched-Chain Amino Acids. Yu MJ; Wu J; Chen SL Chembiochem; 2020 Feb; 21(3):381-391. PubMed ID: 31309701 [TBL] [Abstract][Full Text] [Related]
18. [Biosynthesis of leucine in a reductoisomerase non inducible mutant of Bacillus cereus T]. Raimond J Biochimie; 1979; 61(10):1193-5. PubMed ID: 119554 [No Abstract] [Full Text] [Related]
19. Isolation, characterization and sequence analysis of a full-length cDNA clone encoding acetohydroxy acid reductoisomerase from spinach chloroplasts. Dumas R; Lebrun M; Douce R Biochem J; 1991 Jul; 277 ( Pt 2)(Pt 2):469-75. PubMed ID: 1713446 [TBL] [Abstract][Full Text] [Related]
20. Chemical synthesis, in vitro acetohydroxyacid synthase (AHAS) inhibition, herbicidal activity, and computational studies of isatin derivatives. Wang J; Tan H; Li Y; Ma Y; Li Z; Guddat LW J Agric Food Chem; 2011 Sep; 59(18):9892-900. PubMed ID: 21838297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]