These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 3049255)
1. Molecular characterization of yeast regulatory gene CAT3 necessary for glucose derepression and nuclear localization of its product. Schüller HJ; Entian KD Gene; 1988 Jul; 67(2):247-57. PubMed ID: 3049255 [TBL] [Abstract][Full Text] [Related]
2. Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes. Schüller HJ; Entian KD Mol Gen Genet; 1987 Sep; 209(2):366-73. PubMed ID: 2823078 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Niederacher D; Entian KD Eur J Biochem; 1991 Sep; 200(2):311-9. PubMed ID: 1889400 [TBL] [Abstract][Full Text] [Related]
4. Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. Schüller HJ; Entian KD J Bacteriol; 1991 Mar; 173(6):2045-52. PubMed ID: 2002006 [TBL] [Abstract][Full Text] [Related]
5. New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. Entian KD; Zimmermann FK J Bacteriol; 1982 Sep; 151(3):1123-8. PubMed ID: 7050076 [TBL] [Abstract][Full Text] [Related]
6. Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Celenza JL; Carlson M Mol Cell Biol; 1984 Jan; 4(1):49-53. PubMed ID: 6366512 [TBL] [Abstract][Full Text] [Related]
7. A yeast protein with homology to the beta-subunit of G proteins is involved in control of heme-regulated and catabolite-repressed genes. Zhang M; Rosenblum-Vos LS; Lowry CV; Boakye KA; Zitomer RS Gene; 1991 Jan; 97(2):153-61. PubMed ID: 1900249 [TBL] [Abstract][Full Text] [Related]
8. Cloning and characterization of the CYC8 gene mediating glucose repression in yeast. Trumbly RJ Gene; 1988 Dec; 73(1):97-111. PubMed ID: 2854095 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning of soluble aminopeptidases from Saccharomyces cerevisiae. Sequence analysis of aminopeptidase yscII, a putative zinc-metallopeptidase. García-Alvarez N; Cueva R; Suárez-Rendueles P Eur J Biochem; 1991 Dec; 202(3):993-1002. PubMed ID: 1765107 [TBL] [Abstract][Full Text] [Related]
10. Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme. Albig W; Entian KD Gene; 1988 Dec; 73(1):141-52. PubMed ID: 3072253 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning of the GAL80 gene from Saccharomyces cerevisiae and characterization of a gal80 deletion. Yocum RR; Johnston M Gene; 1984 Dec; 32(1-2):75-82. PubMed ID: 6397403 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the expression and secretion of the Candida tsukubaensis alpha-glucosidase gene in the yeast Saccharomyces cerevisiae. Kinsella BT; Cantwell BA Yeast; 1991 Jul; 7(5):445-54. PubMed ID: 1897311 [TBL] [Abstract][Full Text] [Related]
13. Negative regulatory elements of the Saccharomyces cerevisiae PHO system: interaction between PHO80 and PHO85 proteins. Gilliquet V; Legrain M; Berben G; Hilger F Gene; 1990 Dec; 96(2):181-8. PubMed ID: 2269431 [TBL] [Abstract][Full Text] [Related]
14. Molecular genetics of ICL2, encoding a non-functional isocitrate lyase in Saccharomyces cerevisiae. Heinisch JJ; Valdés E; Alvarez J; Rodicio R Yeast; 1996 Oct; 12(13):1285-95. PubMed ID: 8923733 [TBL] [Abstract][Full Text] [Related]
15. The ICL1 gene from Saccharomyces cerevisiae. Fernández E; Moreno F; Rodicio R Eur J Biochem; 1992 Mar; 204(3):983-90. PubMed ID: 1551398 [TBL] [Abstract][Full Text] [Related]
16. Localization of the upstream regulatory sites of yeast iso2-cytochrome c gene. Iborra F; Francingues MC; Guerineau M Mol Gen Genet; 1985; 199(1):117-22. PubMed ID: 2987643 [TBL] [Abstract][Full Text] [Related]
17. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI. Reidl J; Römisch K; Ehrmann M; Boos W J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898 [TBL] [Abstract][Full Text] [Related]
18. FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of saccharomyces cerevisiae. Goffrini P; Ficarelli A; Donnini C; Lodi T; Puglisi PP; Ferrero I Curr Genet; 1996 Mar; 29(4):316-26. PubMed ID: 8598052 [TBL] [Abstract][Full Text] [Related]
19. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Burns N; Grimwade B; Ross-Macdonald PB; Choi EY; Finberg K; Roeder GS; Snyder M Genes Dev; 1994 May; 8(9):1087-105. PubMed ID: 7926789 [TBL] [Abstract][Full Text] [Related]
20. Primary structure of the maltose-permease-encoding gene of Saccharomyces carlsbergensis. Yao B; Sollitti P; Marmur J Gene; 1989 Jul; 79(2):189-97. PubMed ID: 2507395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]