These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 304933)
1. Role of connectin in the length-tension relation of skeletal and cardiac muscles. Matsubara S; Maruyama K Jpn J Physiol; 1977; 27(5):589-600. PubMed ID: 304933 [TBL] [Abstract][Full Text] [Related]
2. The variation in thermoelasticity with sarcomere length in frog's striated muscle. Matsubara S Jpn J Physiol; 1975; 25(2):227-40. PubMed ID: 1080216 [TBL] [Abstract][Full Text] [Related]
3. Myofibrils bear most of the resting tension in frog skeletal muscle. Magid A; Law DJ Science; 1985 Dec; 230(4731):1280-2. PubMed ID: 4071053 [TBL] [Abstract][Full Text] [Related]
4. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7101-5. PubMed ID: 1714586 [TBL] [Abstract][Full Text] [Related]
5. Changes in contractile properties with selective digestion of connectin (titin) in skinned fibers of frog skeletal muscle. Higuchi H J Biochem; 1992 Mar; 111(3):291-5. PubMed ID: 1587789 [TBL] [Abstract][Full Text] [Related]
6. Tension responses to quick length changes of glycerinated skeletal muscle fibres from the frog and tortoise. Heinl P; Kuhn HJ; Rüegg JC J Physiol; 1974 Mar; 237(2):243-58. PubMed ID: 4545181 [TBL] [Abstract][Full Text] [Related]
7. Resting sarcomere length-tension relation in living frog heart. Winegrad S J Gen Physiol; 1974 Sep; 64(3):343-55. PubMed ID: 4547293 [TBL] [Abstract][Full Text] [Related]
8. Localization and elasticity of connectin (titin) filaments in skinned frog muscle fibres subjected to partial depolymerization of thick filaments. Higuchi H; Suzuki T; Kimura S; Yoshioka T; Maruyama K; Umazume Y J Muscle Res Cell Motil; 1992 Jun; 13(3):285-94. PubMed ID: 1527215 [TBL] [Abstract][Full Text] [Related]
9. Passive force generation and titin isoforms in mammalian skeletal muscle. Horowits R Biophys J; 1992 Feb; 61(2):392-8. PubMed ID: 1547327 [TBL] [Abstract][Full Text] [Related]
10. Laser diffraction studies of sarcomere dynamics during 'isometric' relaxation in isolated muscle fibres of the frog. Edman KA; Flitney FW J Physiol; 1982 Aug; 329():1-20. PubMed ID: 6982971 [TBL] [Abstract][Full Text] [Related]
11. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Granzier H; Helmes M; Trombitás K Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219 [TBL] [Abstract][Full Text] [Related]
12. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977 [TBL] [Abstract][Full Text] [Related]
13. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Granzier HL; Wang K Biophys J; 1993 Nov; 65(5):2141-59. PubMed ID: 8298040 [TBL] [Abstract][Full Text] [Related]
14. Temperature and amplitude dependence of tension transients in glycerinated skeletal and insect fibrillar muscle. Abbott RH; Steiger GJ J Physiol; 1977 Mar; 266(1):13-42. PubMed ID: 856995 [TBL] [Abstract][Full Text] [Related]