These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 3049515)
1. Glucose transport into rat skeletal muscle: interaction between exercise and insulin. Wallberg-Henriksson H; Constable SH; Young DA; Holloszy JO J Appl Physiol (1985); 1988 Aug; 65(2):909-13. PubMed ID: 3049515 [TBL] [Abstract][Full Text] [Related]
2. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Cartee GD; Young DA; Sleeper MD; Zierath J; Wallberg-Henriksson H; Holloszy JO Am J Physiol; 1989 Apr; 256(4 Pt 1):E494-9. PubMed ID: 2650561 [TBL] [Abstract][Full Text] [Related]
3. Exercise increases susceptibility of muscle glucose transport to activation by various stimuli. Cartee GD; Holloszy JO Am J Physiol; 1990 Feb; 258(2 Pt 1):E390-3. PubMed ID: 2305881 [TBL] [Abstract][Full Text] [Related]
4. Muscle glucose transport: interactions of in vitro contractions, insulin, and exercise. Constable SH; Favier RJ; Cartee GD; Young DA; Holloszy JO J Appl Physiol (1985); 1988 Jun; 64(6):2329-32. PubMed ID: 3136124 [TBL] [Abstract][Full Text] [Related]
5. Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium. Henriksen EJ; Rodnick KJ; Holloszy JO J Biol Chem; 1989 Dec; 264(36):21536-43. PubMed ID: 2600081 [TBL] [Abstract][Full Text] [Related]
6. Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose. Gulve EA; Cartee GD; Zierath JR; Corpus VM; Holloszy JO Am J Physiol; 1990 Nov; 259(5 Pt 1):E685-91. PubMed ID: 2240207 [TBL] [Abstract][Full Text] [Related]
7. Activation of glucose transport in diabetic muscle: responses to contraction and insulin. Wallberg-Henriksson H; Holloszy JO Am J Physiol; 1985 Sep; 249(3 Pt 1):C233-7. PubMed ID: 3898862 [TBL] [Abstract][Full Text] [Related]
8. Persistent effects of exercise on skeletal muscle glucose transport across the life-span of rats. Cartee GD; Briggs-Tung C; Kietzke EW J Appl Physiol (1985); 1993 Aug; 75(2):972-8. PubMed ID: 8226503 [TBL] [Abstract][Full Text] [Related]
9. Basal and insulin-stimulated skeletal muscle sugar transport in endotoxic and bacteremic rats. Westfall MV; Sayeed MM Am J Physiol; 1988 Apr; 254(4 Pt 2):R673-9. PubMed ID: 3281478 [TBL] [Abstract][Full Text] [Related]
10. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat. Rasmussen MJ; Clausen T Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557 [TBL] [Abstract][Full Text] [Related]
11. Stimulation of glucose transport in skeletal muscle by hypoxia. Cartee GD; Douen AG; Ramlal T; Klip A; Holloszy JO J Appl Physiol (1985); 1991 Apr; 70(4):1593-600. PubMed ID: 2055841 [TBL] [Abstract][Full Text] [Related]
12. Repeated exercise regulates glucose transport capacity in skeletal muscle. Wallberg-Henriksson H Acta Physiol Scand; 1986 May; 127(1):39-43. PubMed ID: 3524115 [TBL] [Abstract][Full Text] [Related]
13. Effects of phenylarsine oxide on stimulation of glucose transport in rat skeletal muscle. Henriksen EJ; Holloszy JO Am J Physiol; 1990 Apr; 258(4 Pt 1):C648-53. PubMed ID: 2185640 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of glucose transport in rat muscle: effects of insulin and contractions. Ploug T; Galbo H; Vinten J; Jørgensen M; Richter EA Am J Physiol; 1987 Jul; 253(1 Pt 1):E12-20. PubMed ID: 3300362 [TBL] [Abstract][Full Text] [Related]
15. Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. Mühlbacher C; Karnieli E; Schaff P; Obermaier B; Mushack J; Rattenhuber E; Häring HU Biochem J; 1988 Feb; 249(3):865-70. PubMed ID: 3281656 [TBL] [Abstract][Full Text] [Related]
16. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. Ren JM; Semenkovich CF; Gulve EA; Gao J; Holloszy JO J Biol Chem; 1994 May; 269(20):14396-401. PubMed ID: 8182045 [TBL] [Abstract][Full Text] [Related]
17. Effect of diltiazem on skeletal muscle 3-O-methylglucose transport in bacteremic rats. Westfall MV; Sayeed MM Am J Physiol; 1989 Mar; 256(3 Pt 2):R716-21. PubMed ID: 2646956 [TBL] [Abstract][Full Text] [Related]
18. Diverse effects of insulin-induced hyperpolarization on 3-O-methyl-D-glucose (3-O-MG) transport in frog skeletal muscles. Marunaka Y; Murayama K; Kitasato H Horm Metab Res; 1987 Apr; 19(4):139-42. PubMed ID: 3556372 [TBL] [Abstract][Full Text] [Related]
19. Action of insulin on the transport of 3-O-methylglucose in frog sartorius muscles. Narahara HT; Green JD J Biol Chem; 1983 May; 258(10):6120-4. PubMed ID: 6343370 [TBL] [Abstract][Full Text] [Related]
20. Activation of glucose transport in muscle by prolonged exposure to insulin. Effects of glucose and insulin concentrations. Young DA; Uhl JJ; Cartee GD; Holloszy JO J Biol Chem; 1986 Dec; 261(34):16049-53. PubMed ID: 3536920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]