These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3049549)

  • 61. Evidence for nucleotide-mediated changes in the domain structure of the recA protein of Escherichia coli.
    Kobayashi N; Knight K; McEntee K
    Biochemistry; 1987 Oct; 26(21):6801-10. PubMed ID: 3322389
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Purification and characterization of recA protein from salmonella typhimurium.
    Pierré A; Paoletti C
    J Biol Chem; 1983 Mar; 258(5):2870-4. PubMed ID: 6219107
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enzymatic Synthesis of Nucleoside Triphosphates and Deoxynucleoside Triphosphates by Surface-Displayed Kinases.
    Ding Y; Ou L; Ding Q
    Appl Biochem Biotechnol; 2020 Apr; 190(4):1271-1288. PubMed ID: 31745822
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mutational analysis of the RecA protein L1 region identifies this area as a probable part of the co-protease substrate binding site.
    Nastri HG; Guzzo A; Lange CS; Walker GC; Knight KL
    Mol Microbiol; 1997 Sep; 25(5):967-78. PubMed ID: 9364921
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Staphylococcus aureus MazG hydrolyzes oxidized guanine nucleotides and contributes to oxidative stress resistance.
    Nigo F; Nakagawa R; Hirai Y; Imai L; Suzuki Y; Furuta K; Kaito C
    Biochimie; 2023 Jun; 209():52-60. PubMed ID: 36746255
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Development of a retention prediction model in ion-pair reversed-phase HPLC for nucleoside triphosphates used as mRNA vaccine raw materials.
    Kitamura R; Kawabe T; Masuda Y; Kajiro T; Nonaka K; Yonemochi E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Mar; 1193():123168. PubMed ID: 35183952
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Active Uptake and Trafficking of Nucleoside Triphosphates
    Schreier VN; Loehr MO; Lattmann E; Luedtke NW
    ACS Chem Biol; 2022 Jul; 17(7):1799-1810. PubMed ID: 35700414
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modified nucleoside triphosphates in bacterial research for
    Espinasse A; Lembke HK; Cao AA; Carlson EE
    RSC Chem Biol; 2020 Dec; 1(5):333-351. PubMed ID: 33928252
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Design and comparative characterization of RecA variants.
    Del Val E; Nasser W; Abaibou H; Reverchon S
    Sci Rep; 2021 Oct; 11(1):21106. PubMed ID: 34702889
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The SOS system: A complex and tightly regulated response to DNA damage.
    Maslowska KH; Makiela-Dzbenska K; Fijalkowska IJ
    Environ Mol Mutagen; 2019 May; 60(4):368-384. PubMed ID: 30447030
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Suppression of the E. coli SOS response by dNTP pool changes.
    Maslowska KH; Makiela-Dzbenska K; Fijalkowska IJ; Schaaper RM
    Nucleic Acids Res; 2015 Apr; 43(8):4109-20. PubMed ID: 25824947
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Distinguishing characteristics of hyperrecombinogenic RecA protein from Pseudomonas aeruginosa acting in Escherichia coli.
    Baitin DM; Bakhlanova IV; Kil YV; Cox MM; Lanzov VA
    J Bacteriol; 2006 Aug; 188(16):5812-20. PubMed ID: 16885449
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Analysis of Escherichia coli RecA interactions with LexA, lambda CI, and UmuD by site-directed mutagenesis of recA.
    Mustard JA; Little JW
    J Bacteriol; 2000 Mar; 182(6):1659-70. PubMed ID: 10692372
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genetic characteristics of new recA mutants of Escherichia coli K-12.
    Alexseyev AA; Bakhlanova IV; Zaitsev EN; Lanzov VA
    J Bacteriol; 1996 Apr; 178(7):2018-24. PubMed ID: 8606178
    [TBL] [Abstract][Full Text] [Related]  

  • 75. recA mutations that reduce the constitutive coprotease activity of the RecA1202(Prtc) protein: possible involvement of interfilament association in proteolytic and recombination activities.
    Liu SK; Eisen JA; Hanawalt PC; Tessman I
    J Bacteriol; 1993 Oct; 175(20):6518-29. PubMed ID: 8407828
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biochemistry of homologous recombination in Escherichia coli.
    Kowalczykowski SC; Dixon DA; Eggleston AK; Lauder SD; Rehrauer WM
    Microbiol Rev; 1994 Sep; 58(3):401-65. PubMed ID: 7968921
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Activation of protease-constitutive recA proteins of Escherichia coli by rRNA and tRNA.
    Wang WB; Tessman ES; Tessman I
    J Bacteriol; 1988 Oct; 170(10):4823-7. PubMed ID: 2459110
    [TBL] [Abstract][Full Text] [Related]  

  • 78. groE genes affect SOS repair in Escherichia coli.
    Liu SK; Tessman I
    J Bacteriol; 1990 Oct; 172(10):6135-8. PubMed ID: 2211529
    [TBL] [Abstract][Full Text] [Related]  

  • 79. LexA protein of Escherichia coli represses expression of the Tn5 transposase gene.
    Kuan CT; Tessman I
    J Bacteriol; 1991 Oct; 173(20):6406-10. PubMed ID: 1655708
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Excision and transposition of Tn5 as an SOS activity in Escherichia coli.
    Kuan CT; Liu SK; Tessman I
    Genetics; 1991 May; 128(1):45-57. PubMed ID: 1648004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.