BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3049551)

  • 1. High-affinity glucose transport in Saccharomyces cerevisiae is under general glucose repression control.
    Bisson LF
    J Bacteriol; 1988 Oct; 170(10):4838-45. PubMed ID: 3049551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae.
    Neigeborn L; Carlson M
    Genetics; 1984 Dec; 108(4):845-58. PubMed ID: 6392017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in Saccharomyces cerevisiae.
    Abrams E; Neigeborn L; Carlson M
    Mol Cell Biol; 1986 Nov; 6(11):3643-51. PubMed ID: 3540598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae.
    Ozcan S; Freidel K; Leuker A; Ciriacy M
    J Bacteriol; 1993 Sep; 175(17):5520-8. PubMed ID: 8366037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genes required for derepression of an extracellular glucoamylase gene, STA2, in the yeast Saccharomyces.
    Kuchin SV; Kartasheva NN; Benevolensky SV
    Yeast; 1993 May; 9(5):533-41. PubMed ID: 8322516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally.
    Wendell DL; Bisson LF
    J Bacteriol; 1994 Jun; 176(12):3730-7. PubMed ID: 8206851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of growth media, gene copy number, and regulatory mutations on the expression of the PRB1 gene of Saccharomyces cerevisiae.
    Moehle CM; Jones EW
    Genetics; 1990 Jan; 124(1):39-55. PubMed ID: 2407604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast.
    Neigeborn L; Rubin K; Carlson M
    Genetics; 1986 Apr; 112(4):741-53. PubMed ID: 3514373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae.
    Celenza JL; Carlson M
    Mol Cell Biol; 1984 Jan; 4(1):49-53. PubMed ID: 6366512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1.
    Rodríguez C; Sanz P; Gancedo C
    FEMS Yeast Res; 2003 Mar; 3(1):77-84. PubMed ID: 12702249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutants of yeast defective in sucrose utilization.
    Carlson M; Osmond BC; Botstein D
    Genetics; 1981 May; 98(1):25-40. PubMed ID: 7040163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes.
    Schüller HJ; Entian KD
    J Bacteriol; 1991 Mar; 173(6):2045-52. PubMed ID: 2002006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the proteinase B structural gene PRB1 in Saccharomyces cerevisiae.
    Naik RR; Nebes V; Jones EW
    J Bacteriol; 1997 Mar; 179(5):1469-74. PubMed ID: 9045801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular analysis of the SNF8 gene of Saccharomyces cerevisiae.
    Yeghiayan P; Tu J; Vallier LG; Carlson M
    Yeast; 1995 Mar; 11(3):219-24. PubMed ID: 7785322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose.
    Walsh MC; Smits HP; Scholte M; van Dam K
    J Bacteriol; 1994 Feb; 176(4):953-8. PubMed ID: 8106337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae.
    Bisson LF; Neigeborn L; Carlson M; Fraenkel DG
    J Bacteriol; 1987 Apr; 169(4):1656-62. PubMed ID: 3549699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae.
    Ludin K; Jiang R; Carlson M
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6245-50. PubMed ID: 9600950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A suppressor of SNF1 mutations causes constitutive high-level invertase synthesis in yeast.
    Carlson M; Osmond BC; Neigeborn L; Botstein D
    Genetics; 1984 May; 107(1):19-32. PubMed ID: 6373495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae.
    Gamo FJ; Lafuente MJ; Gancedo C
    J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.