These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3049551)

  • 21. Structure and expression of the SNF1 gene of Saccharomyces cerevisiae.
    Celenza JL; Carlson M
    Mol Cell Biol; 1984 Jan; 4(1):54-60. PubMed ID: 6366513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family.
    Walsh MC; Scholte M; Valkier J; Smits HP; van Dam K
    J Bacteriol; 1996 May; 178(9):2593-7. PubMed ID: 8626327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The SNF2, SNF5 and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae.
    Happel AM; Swanson MS; Winston F
    Genetics; 1991 May; 128(1):69-77. PubMed ID: 1648006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship between low- and high-affinity glucose transport systems of Saccharomyces cerevisiae.
    Ramos J; Szkutnicka K; Cirillo VP
    J Bacteriol; 1988 Nov; 170(11):5375-7. PubMed ID: 3053662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of SNF4 and deletions of REG1- and REG2-enhanced maltose metabolism and leavening ability of baker's yeast in lean dough.
    Lin X; Zhang CY; Meng L; Bai XW; Xiao DG
    J Ind Microbiol Biotechnol; 2018 Sep; 45(9):827-838. PubMed ID: 29936578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.
    Zimmermann FK; Scheel I
    Mol Gen Genet; 1977 Jul; 154(1):75-82. PubMed ID: 197390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Derepression of high-affinity glucose uptake requires a functional secretory system in Saccharomyces cerevisiae.
    Bisson LF
    J Bacteriol; 1988 Jun; 170(6):2654-8. PubMed ID: 3286616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Snf1-dependent and Snf1-independent pathways of constitutive ADH2 expression in Saccharomyces cerevisiae.
    Voronkova V; Kacherovsky N; Tachibana C; Yu D; Young ET
    Genetics; 2006 Apr; 172(4):2123-38. PubMed ID: 16415371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid kinetics of glucose uptake in Saccharomyces cerevisiae.
    Walsh MC; Smits HP; Scholte M; Smits G; van Dam K
    Folia Microbiol (Praha); 1994; 39(6):557-9. PubMed ID: 8550023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae.
    Bisson LF; Fraenkel DG
    J Bacteriol; 1984 Sep; 159(3):1013-7. PubMed ID: 6384176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-affinity glucose uptake in Saccharomyces cerevisiae is not dependent on the presence of glucose-phosphorylating enzymes.
    Smits HP; Smits GJ; Postma PW; Walsh MC; van Dam K
    Yeast; 1996 Apr; 12(5):439-47. PubMed ID: 8740417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2-Deoxy-D-glucose resistant yeast with altered sugar transport activity.
    Novak S; D'Amore T; Stewart GG
    FEBS Lett; 1990 Aug; 269(1):202-4. PubMed ID: 2201568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dominant and recessive suppressors that restore glucose transport in a yeast snf3 mutant.
    Marshall-Carlson L; Neigeborn L; Coons D; Bisson L; Carlson M
    Genetics; 1991 Jul; 128(3):505-12. PubMed ID: 1874412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae.
    Auesukaree C; Homma T; Kaneko Y; Harashima S
    Biochem Biophys Res Commun; 2003 Jul; 306(4):843-50. PubMed ID: 12821119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations releasing mitochondrial biogenesis from glucose repression in Saccharomyces cerevisiae.
    Böker-Schmitt E; Francisci S; Schweyen RJ
    J Bacteriol; 1982 Jul; 151(1):303-10. PubMed ID: 7045078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose repression in Saccharomyces cerevisiae.
    Kayikci Ö; Nielsen J
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26205245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient export of the glucose transporter Hxt1p from the endoplasmic reticulum requires Gsf2p.
    Sherwood PW; Carlson M
    Proc Natl Acad Sci U S A; 1999 Jun; 96(13):7415-20. PubMed ID: 10377429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation of Saccharomyces cerevisiae mutants constitutive for invertase synthesis.
    Trumbly RJ
    J Bacteriol; 1986 Jun; 166(3):1123-7. PubMed ID: 3519577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiological characterization of glucose repression in the strains with SNF1 and SNF4 genes deleted.
    Usaite R; Nielsen J; Olsson L
    J Biotechnol; 2008 Jan; 133(1):73-81. PubMed ID: 17949842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.