These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 30495931)
21. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. An B; Li Z; Wang Z; Zeng X; Han X; Cheng Y; Sheveleva AM; Zhang Z; Tuna F; McInnes EJL; Frogley MD; Ramirez-Cuesta AJ; S Natrajan L; Wang C; Lin W; Yang S; Schröder M Nat Mater; 2022 Aug; 21(8):932-938. PubMed ID: 35773491 [TBL] [Abstract][Full Text] [Related]
22. How a [Co(IV) a bond and a half O](2+) fragment oxidizes water: involvement of a biradicaloid [Co(II)-(⋅O⋅)](2+) species in forming the O-O bond. Crandell DW; Ghosh S; Berlinguette CP; Baik MH ChemSusChem; 2015 Mar; 8(5):844-52. PubMed ID: 25641853 [TBL] [Abstract][Full Text] [Related]
23. Thermal Methane Conversion to Formaldehyde Mediated by NiAlO Li YK; Sun CM; Wei GP; He SG; Asmis KR; Zang SQ J Phys Chem A; 2023 Feb; 127(7):1636-1641. PubMed ID: 36786668 [TBL] [Abstract][Full Text] [Related]
24. Partial Oxidation of Methane to Methanol on the M-O-Ag/Graphene (M = Ag, Cu) Composite Catalyst: A DFT Study. Yan Z; Xu H; Huang L; Fu H; Li S Langmuir; 2023 Feb; 39(6):2422-2434. PubMed ID: 36734609 [TBL] [Abstract][Full Text] [Related]
25. Mechanistic insight into the formation of acetic acid from the direct conversion of methane and carbon dioxide on zinc-modified H-ZSM-5 zeolite. Wu JF; Yu SM; Wang WD; Fan YX; Bai S; Zhang CW; Gao Q; Huang J; Wang W J Am Chem Soc; 2013 Sep; 135(36):13567-73. PubMed ID: 23981101 [TBL] [Abstract][Full Text] [Related]
26. Second-Sphere Effects on Methane Hydroxylation in Cu-Zeolites. Snyder BER; Vanelderen P; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2018 Jul; 140(29):9236-9243. PubMed ID: 29954176 [TBL] [Abstract][Full Text] [Related]
27. Success in making Zn+ from atomic Zn(0) encapsulated in an MFI-type zeolite with UV light irradiation. Oda A; Torigoe H; Itadani A; Ohkubo T; Yumura T; Kobayashi H; Kuroda Y J Am Chem Soc; 2013 Dec; 135(49):18481-9. PubMed ID: 24224580 [TBL] [Abstract][Full Text] [Related]
28. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Snyder BE; Vanelderen P; Bols ML; Hallaert SD; Böttger LH; Ungur L; Pierloot K; Schoonheydt RA; Sels BF; Solomon EI Nature; 2016 Aug; 536(7616):317-21. PubMed ID: 27535535 [TBL] [Abstract][Full Text] [Related]
29. Methane C-H bond heterolysis versus homolysis on Cu-MFI and Au-MFI. Sajid M; Khan B; Shahzad N J Mol Graph Model; 2023 Jun; 121():108446. PubMed ID: 36898226 [TBL] [Abstract][Full Text] [Related]
30. Property-activity relations of multifunctional reactive ensembles in cation-exchanged zeolites: a case study of methane activation on Zn Kolganov AA; Gabrienko AA; Chernyshov IY; Stepanov AG; Pidko EA Phys Chem Chem Phys; 2022 Mar; 24(11):6492-6504. PubMed ID: 35254352 [TBL] [Abstract][Full Text] [Related]
31. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. Sharma PK; De Visser SP; Ogliaro F; Shaik S J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559 [TBL] [Abstract][Full Text] [Related]
32. Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate. Arora H; Barman SK; Lloret F; Mukherjee R Inorg Chem; 2012 May; 51(10):5539-53. PubMed ID: 22536852 [TBL] [Abstract][Full Text] [Related]
33. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate. Chen P; Bell J; Eipper BA; Solomon EI Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448 [TBL] [Abstract][Full Text] [Related]
34. Hydrogen Bond-Enabled Heterolytic and Homolytic Peroxide Activation within Nonheme Copper(II)-Alkylperoxo Complexes. Oh H; Ching WM; Kim J; Lee WZ; Hong S Inorg Chem; 2019 Oct; 58(19):12964-12974. PubMed ID: 31524386 [TBL] [Abstract][Full Text] [Related]
35. Oxidation of methane and ethylene over Al incorporated N-doped graphene: A comparative mechanistic DFT study. Mousavian P; Esrafili MD; Sardroodi JJ J Mol Graph Model; 2022 Dec; 117():108284. PubMed ID: 35987185 [TBL] [Abstract][Full Text] [Related]
37. The Reactive Sites of Methane Activation: A Comparison of IrC Liu Z; Wu H; Li W; Wu X Molecules; 2021 Oct; 26(19):. PubMed ID: 34641573 [TBL] [Abstract][Full Text] [Related]
38. Effects of single and double active sites of Cu oxide clusters over the MFI zeolite for direct conversion of methane to methanol: DFT calculations. Nunthakitgoson W; Thivasasith A; Maihom T; Wattanakit C Phys Chem Chem Phys; 2021 Jan; 23(3):2500-2510. PubMed ID: 33465219 [TBL] [Abstract][Full Text] [Related]
39. Theoretical Investigation of Methane Hydroxylation over Isoelectronic [FeO] Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Inorg Chem; 2017 Sep; 56(17):10370-10380. PubMed ID: 28809113 [TBL] [Abstract][Full Text] [Related]
40. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6. Carrell TG; Bourles E; Lin M; Dismukes GC Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]