BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30495938)

  • 1. Catalytic Synthesis of Superlinear Alkenyl Arenes Using a Rh(I) Catalyst Supported by a "Capping Arene" Ligand: Access to Aerobic Catalysis.
    Chen J; Nielsen RJ; Goddard WA; McKeown BA; Dickie DA; Gunnoe TB
    J Am Chem Soc; 2018 Dec; 140(49):17007-17018. PubMed ID: 30495938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation.
    Zhu W; Gunnoe TB
    Acc Chem Res; 2020 Apr; 53(4):920-936. PubMed ID: 32239913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic Synthesis of "Super" Linear Alkenyl Arenes Using an Easily Prepared Rh(I) Catalyst.
    Webster-Gardiner MS; Chen J; Vaughan BA; McKeown BA; Schinski W; Gunnoe TB
    J Am Chem Soc; 2017 Apr; 139(15):5474-5480. PubMed ID: 28383890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pd(II) and Rh(I) Catalytic Precursors for Arene Alkenylation: Comparative Evaluation of Reactivity and Mechanism Based on Experimental and Computational Studies.
    Bennett MT; Jia X; Musgrave CB; Zhu W; Goddard WA; Gunnoe TB
    J Am Chem Soc; 2023 Jul; 145(28):15507-15527. PubMed ID: 37392467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodium(II)-catalyzed nondirected oxidative alkenylation of arenes: arene loading at one equivalent.
    Vora HU; Silvestri AP; Engelin CJ; Yu JQ
    Angew Chem Int Ed Engl; 2014 Mar; 53(10):2683-6. PubMed ID: 24481783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical analysis of the mechanism of palladium(II) acetate-catalyzed oxidative Heck coupling of electron-deficient arenes with alkenes: effects of the pyridine-type ancillary ligand and origins of the meta-regioselectivity.
    Zhang S; Shi L; Ding Y
    J Am Chem Soc; 2011 Dec; 133(50):20218-29. PubMed ID: 22112165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes.
    Boller TM; Murphy JM; Hapke M; Ishiyama T; Miyaura N; Hartwig JF
    J Am Chem Soc; 2005 Oct; 127(41):14263-78. PubMed ID: 16218621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Studies of Single-Step Styrene Production Using a Rhodium(I) Catalyst.
    Vaughan BA; Khani SK; Gary JB; Kammert JD; Webster-Gardiner MS; McKeown BA; Davis RJ; Cundari TR; Gunnoe TB
    J Am Chem Soc; 2017 Feb; 139(4):1485-1498. PubMed ID: 28106388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate activation strategies in rhodium(III)-catalyzed selective functionalization of arenes.
    Song G; Li X
    Acc Chem Res; 2015 Apr; 48(4):1007-20. PubMed ID: 25844661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Stilbenes by Rhodium-Catalyzed Aerobic Alkenylation of Arenes via C-H Activation.
    Jia X; Frye LI; Zhu W; Gu S; Gunnoe TB
    J Am Chem Soc; 2020 Jun; 142(23):10534-10543. PubMed ID: 32453558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Fold C-H/C-H Cross-Coupling Using RhCl
    She Z; Wang Y; Wang D; Zhao Y; Wang T; Zheng X; Yu ZX; Gao G; You J
    J Am Chem Soc; 2018 Oct; 140(39):12566-12573. PubMed ID: 30168716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing a Cu(II)-ArCu(II)-ArCu(III)-Cu(I) catalytic cycle: Cu(II)-catalyzed oxidative arene C-H bond azidation with air as an oxidant under ambient conditions.
    Yao B; Liu Y; Zhao L; Wang DX; Wang MX
    J Org Chem; 2014 Nov; 79(22):11139-45. PubMed ID: 25350606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-coupling reaction of alkyl halides with grignard reagents catalyzed by Ni, Pd, or Cu complexes with pi-carbon ligand(s).
    Terao J; Kambe N
    Acc Chem Res; 2008 Nov; 41(11):1545-54. PubMed ID: 18973349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoselective hydrogenation of arenes by PVP supported Rh nanoparticles.
    Ibrahim M; Poreddy R; Philippot K; Riisager A; Garcia-Suarez EJ
    Dalton Trans; 2016 Dec; 45(48):19368-19373. PubMed ID: 27878165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of selectivity in the [Pt
    Canty AJ; Ariafard A
    Dalton Trans; 2017 Nov; 46(44):15480-15486. PubMed ID: 29090705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.
    Qi X; Li Y; Bai R; Lan Y
    Acc Chem Res; 2017 Nov; 50(11):2799-2808. PubMed ID: 29112396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ formed "weakly ligated/labile ligand" iridium(0) nanoparticles and aggregates as catalysts for the complete hydrogenation of neat benzene at room temperature and mild pressures.
    Bayram E; Zahmakiran M; Ozkar S; Finke RG
    Langmuir; 2010 Jul; 26(14):12455-64. PubMed ID: 20536218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study on mechanism of Rh(III)-catalyzed oxidative Heck coupling of phenol carbamates with alkenes.
    Zhang Q; Yu HZ; Li YT; Liu L; Huang Y; Fu Y
    Dalton Trans; 2013 Mar; 42(12):4175-84. PubMed ID: 23385440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidatively induced reactivity in Rh(iii)-catalyzed 7-azaindole synthesis: insights into the role of the silver additive.
    Ryu H; Pudasaini B; Cho D; Hong S; Baik MH
    Chem Sci; 2022 Sep; 13(36):10707-10714. PubMed ID: 36320687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ru(II) catalysts supported by hydridotris(pyrazolyl)borate for the hydroarylation of olefins: reaction scope, mechanistic studies, and guides for the development of improved catalysts.
    Foley NA; Lee JP; Ke Z; Gunnoe TB; Cundari TR
    Acc Chem Res; 2009 May; 42(5):585-97. PubMed ID: 19296659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.