BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30495942)

  • 1. Life Cycle Greenhouse Gas Impacts of Coal and Imported Gas-Based Power Generation in the Indian Context.
    Mallapragada DS; Naik I; Ganesan K; Banerjee R; Laurenzi IJ
    Environ Sci Technol; 2019 Jan; 53(1):539-549. PubMed ID: 30495942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.
    Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2007 Sep; 41(17):6290-6. PubMed ID: 17937317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas.
    Laurenzi IJ; Jersey GR
    Environ Sci Technol; 2013 May; 47(9):4896-903. PubMed ID: 23548112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of Generation Efficiencies and Supply Chain Leaks for the Life Cycle Greenhouse Gas Emissions of Natural Gas-Fired Electricity in the United States.
    Tavakkoli S; Feng L; Miller SM; Jordaan SM
    Environ Sci Technol; 2022 Feb; 56(4):2540-2550. PubMed ID: 35107984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Oct; 45(19):8182-9. PubMed ID: 21846117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power.
    Schivley G; Ingwersen WW; Marriott J; Hawkins TR; Skone TJ
    Environ Sci Technol; 2015 Jul; 49(13):7562-70. PubMed ID: 26001040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2012 Sep; 46(18):9838-45. PubMed ID: 22888978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.
    Abrahams LS; Samaras C; Griffin WM; Matthews HS
    Environ Sci Technol; 2015 Mar; 49(5):3237-45. PubMed ID: 25650513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pipeline Availability Limits on the Feasibility of Global Coal-to-Gas Switching in the Power Sector.
    Yang S; Hastings-Simon S; Ravikumar AP
    Environ Sci Technol; 2022 Oct; 56(20):14734-14742. PubMed ID: 36174099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greenhouse Gas Estimates of LNG Exports Must Include Global Market Effects.
    Smillie S; Muller N; Griffin WM; Apt J
    Environ Sci Technol; 2022 Jan; 56(2):1194-1201. PubMed ID: 34986310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.
    Bohnengel B; Patiño-Echeverri D; Bergerson J
    Environ Sci Technol; 2014 Aug; 48(16):9908-16. PubMed ID: 25025127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.
    Kasumu AS; Li V; Coleman JW; Liendo J; Jordaan SM
    Environ Sci Technol; 2018 Feb; 52(4):1735-1746. PubMed ID: 29328654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Industrial Parks in Mitigating Greenhouse Gas Emissions from China.
    Guo Y; Tian J; Zang N; Gao Y; Chen L
    Environ Sci Technol; 2018 Jul; 52(14):7754-7762. PubMed ID: 29902379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States cellulosic biofuels.
    Scown CD; Gokhale AA; Willems PA; Horvath A; McKone TE
    Environ Sci Technol; 2014; 48(15):8446-55. PubMed ID: 24988448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greenhouse gas emissions and water footprints of typical dietary patterns in India.
    Green RF; Joy EJM; Harris F; Agrawal S; Aleksandrowicz L; Hillier J; Macdiarmid JI; Milner J; Vetter SH; Smith P; Haines A; Dangour AD
    Sci Total Environ; 2018 Dec; 643():1411-1418. PubMed ID: 30189557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
    Vainikka P; Tsupari E; Sipilä K; Hupa M
    Waste Manag; 2012 Mar; 32(3):426-37. PubMed ID: 22079250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas.
    Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2008 Oct; 42(20):7559-65. PubMed ID: 18983075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation.
    Heath GA; O'Donoughue P; Arent DJ; Bazilian M
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):E3167-76. PubMed ID: 25049378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Emissions and Future Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030.
    Tong D; Zhang Q; Liu F; Geng G; Zheng Y; Xue T; Hong C; Wu R; Qin Y; Zhao H; Yan L; He K
    Environ Sci Technol; 2018 Nov; 52(21):12905-12914. PubMed ID: 30249091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subsidizing Grid-Based Electrolytic Hydrogen Will Increase Greenhouse Gas Emissions in Coal Dominated Power Systems.
    Peng L; Guo Y; Liu S; He G; Mauzerall DL
    Environ Sci Technol; 2024 Mar; 58(12):5187-5195. PubMed ID: 38490225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.