BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30496401)

  • 1. Adaptation of Proteins to the Cold in Antarctic Fish: A Role for Methionine?
    Berthelot C; Clarke J; Desvignes T; William Detrich H; Flicek P; Peck LS; Peters M; Postlethwait JH; Clark MS
    Genome Biol Evol; 2019 Jan; 11(1):220-231. PubMed ID: 30496401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish.
    Bilyk KT; Vargas-Chacoff L; Cheng CC
    BMC Evol Biol; 2018 Sep; 18(1):143. PubMed ID: 30231868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish.
    Chen Z; Cheng CH; Zhang J; Cao L; Chen L; Zhou L; Jin Y; Ye H; Deng C; Dai Z; Xu Q; Hu P; Sun S; Shen Y; Chen L
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12944-9. PubMed ID: 18753634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular ecophysiology of Antarctic notothenioid fishes.
    Cheng CH; Detrich HW
    Philos Trans R Soc Lond B Biol Sci; 2007 Dec; 362(1488):2215-32. PubMed ID: 17553777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of gene expression in extreme cold - reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    BMC Genomics; 2013 Sep; 14():634. PubMed ID: 24053439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures?
    Beers JM; Jayasundara N
    J Exp Biol; 2015 Jun; 218(Pt 12):1834-45. PubMed ID: 26085661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes.
    Xu Q; Cheng CH; Hu P; Ye H; Chen Z; Cao L; Chen L; Shen Y; Chen L
    Mol Biol Evol; 2008 Jun; 25(6):1099-112. PubMed ID: 18310660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical adaptations of notothenioid fishes: comparisons between cold temperate South American and New Zealand species and Antarctic species.
    Coppes Petricorena ZL; Somero GN
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jul; 147(3):799-807. PubMed ID: 17293146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes.
    Chen L; Lu Y; Li W; Ren Y; Yu M; Jiang S; Fu Y; Wang J; Peng S; Bilyk KT; Murphy KR; Zhuang X; Hune M; Zhai W; Wang W; Xu Q; Cheng CC
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30715292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment.
    Shin SC; Ahn DH; Kim SJ; Pyo CW; Lee H; Kim MK; Lee J; Lee JE; Detrich HW; Postlethwait JH; Edwards D; Lee SG; Lee JH; Park H
    Genome Biol; 2014 Sep; 15(9):468. PubMed ID: 25252967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold-Driven Hemoglobin Evolution in Antarctic Notothenioid Fishes Prior to Hemoglobin Gene Loss in White-Blooded Icefishes.
    Desvignes T; Bista I; Herrera K; Landes A; Postlethwait JH
    Mol Biol Evol; 2023 Nov; 40(11):. PubMed ID: 37879119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes.
    Todgham AE; Crombie TA; Hofmann GE
    J Exp Biol; 2017 Feb; 220(Pt 3):369-378. PubMed ID: 27872216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of globin expression in Antarctic fish under thermal and hypoxic stress.
    Giordano D; Corti P; Coppola D; Altomonte G; Xue J; Russo R; di Prisco G; Verde C
    Mar Genomics; 2021 Jun; 57():100831. PubMed ID: 33250437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ND6 gene "lost" and found: evolution of mitochondrial gene rearrangement in Antarctic notothenioids.
    Zhuang X; Cheng CH
    Mol Biol Evol; 2010 Jun; 27(6):1391-403. PubMed ID: 20106908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual Antioxidant Properties of 26S Proteasome Isolated from Cold-Adapted Organisms.
    Gogliettino M; Cocca E; Fusco C; Agrillo B; Riccio A; Balestrieri M; Facchiano A; Pepe A; Palmieri G
    Int J Mol Sci; 2017 Jul; 18(8):. PubMed ID: 28757562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    Mar Genomics; 2014 Dec; 18 Pt B():163-71. PubMed ID: 24999838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncommon functional properties of the first piscine 26S proteasome from the Antarctic notothenioid Trematomus bernacchii.
    Gogliettino M; Balestrieri M; Riccio A; Facchiano A; Fusco C; Palazzo VC; Rossi M; Cocca E; Palmieri G
    Biosci Rep; 2016; 36(2):. PubMed ID: 26933238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes.
    Place SP; Zippay ML; Hofmann GE
    Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R429-36. PubMed ID: 15117724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tale of two genes: divergent evolutionary fate of haptoglobin and hemopexin in hemoglobinless Antarctic icefishes.
    Bilyk KT; Zhuang X; Murphy KR; Cheng CC
    J Exp Biol; 2019 Mar; 222(Pt 6):. PubMed ID: 30765469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in blood serum antifreeze activity of Antarctic Trematomus fishes across habitat temperature and depth.
    Fields LG; DeVries AL
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():43-50. PubMed ID: 25770668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.