BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30496469)

  • 1. TFforge utilizes large-scale binding site divergence to identify transcriptional regulators involved in phenotypic differences.
    Langer BE; Hiller M
    Nucleic Acids Res; 2019 Feb; 47(4):e19. PubMed ID: 30496469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. REforge Associates Transcription Factor Binding Site Divergence in Regulatory Elements with Phenotypic Differences between Species.
    Langer BE; Roscito JG; Hiller M
    Mol Biol Evol; 2018 Dec; 35(12):3027-3040. PubMed ID: 30256993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution.
    Roscito JG; Sameith K; Parra G; Langer BE; Petzold A; Moebius C; Bickle M; Rodrigues MT; Hiller M
    Nat Commun; 2018 Nov; 9(1):4737. PubMed ID: 30413698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of gene regulatory networks: from network reconstruction to evolution.
    Thompson D; Regev A; Roy S
    Annu Rev Cell Dev Biol; 2015; 31():399-428. PubMed ID: 26355593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informational requirements for transcriptional regulation.
    O'Neill PK; Forder R; Erill I
    J Comput Biol; 2014 May; 21(5):373-84. PubMed ID: 24689750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling for Phylogenetic Relatedness and Evolutionary Rates Improves the Discovery of Associations Between Species' Phenotypic and Genomic Differences.
    Prudent X; Parra G; Schwede P; Roscito JG; Hiller M
    Mol Biol Evol; 2016 Aug; 33(8):2135-50. PubMed ID: 27222536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic robustness and the assortativity signature of human transcription factor networks.
    Pechenick DA; Payne JL; Moore JH
    PLoS Comput Biol; 2014 Aug; 10(8):e1003780. PubMed ID: 25121490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pervasive variation of transcription factor orthologs contributes to regulatory network evolution.
    Nadimpalli S; Persikov AV; Singh M
    PLoS Genet; 2015 Mar; 11(3):e1005011. PubMed ID: 25748510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic and genetic alterations and their influence on gene regulation in chronic lymphocytic leukemia.
    Huang D; Ovcharenko I
    BMC Genomics; 2017 Mar; 18(1):236. PubMed ID: 28302063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information.
    Kulkarni SR; Vaneechoutte D; Van de Velde J; Vandepoele K
    Nucleic Acids Res; 2018 Apr; 46(6):e31. PubMed ID: 29272447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction and Analysis of the Evolution of Modular Transcriptional Regulatory Programs Using Arboretum.
    Knaack SA; Thompson DA; Roy S
    Methods Mol Biol; 2016; 1361():375-89. PubMed ID: 26483033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical Programming for Modeling Expression of a Gene Using Gurobi Optimizer to Identify Its Transcriptional Regulators.
    Muley VY
    Methods Mol Biol; 2021; 2328():99-113. PubMed ID: 34251621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.
    Denas O; Sandstrom R; Cheng Y; Beal K; Herrero J; Hardison RC; Taylor J
    BMC Genomics; 2015 Feb; 16(1):87. PubMed ID: 25765714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SalMotifDB: a tool for analyzing putative transcription factor binding sites in salmonid genomes.
    Mulugeta TD; Nome T; To TH; Gundappa MK; Macqueen DJ; Våge DI; Sandve SR; Hvidsten TR
    BMC Genomics; 2019 Sep; 20(1):694. PubMed ID: 31477007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory network structure as a dominant determinant of transcription factor evolutionary rate.
    Coulombe-Huntington J; Xia Y
    PLoS Comput Biol; 2012; 8(10):e1002734. PubMed ID: 23093926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inference of phenotype-relevant transcriptional regulatory networks elucidates cancer type-specific regulatory mechanisms in a pan-cancer study.
    Emad A; Sinha S
    NPJ Syst Biol Appl; 2021 Feb; 7(1):9. PubMed ID: 33558504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepTFactor: A deep learning-based tool for the prediction of transcription factors.
    Kim GB; Gao Y; Palsson BO; Lee SY
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric evolution of human transcription factor regulatory networks.
    Zhou Z; Zhou J; Su Z; Gu X
    Mol Biol Evol; 2014 Aug; 31(8):2149-55. PubMed ID: 24847042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference and Evolutionary Analysis of Genome-Scale Regulatory Networks in Large Phylogenies.
    Koch C; Konieczka J; Delorey T; Lyons A; Socha A; Davis K; Knaack SA; Thompson D; O'Shea EK; Regev A; Roy S
    Cell Syst; 2017 May; 4(5):543-558.e8. PubMed ID: 28544882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression.
    Sun X; Wang X; Tang Z; Grivainis M; Kahler D; Yun C; Mita P; Fenyö D; Boeke JD
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):E5526-E5535. PubMed ID: 29802231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.