These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 30496836)
41. Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Gudiña EJ; Rocha V; Teixeira JA; Rodrigues LR Lett Appl Microbiol; 2010 Apr; 50(4):419-24. PubMed ID: 20184670 [TBL] [Abstract][Full Text] [Related]
42. Functional and Structural Characterization of Adnan M; Siddiqui AJ; Hamadou WS; Ashraf SA; Hassan MI; Snoussi M; Badraoui R; Jamal A; Bardakci F; Awadelkareem AM; Sachidanandan M; Patel M Antibiotics (Basel); 2021 Nov; 10(11):. PubMed ID: 34827310 [TBL] [Abstract][Full Text] [Related]
43. The biosurfactants iturin, lichenysin and surfactin, from vaginally isolated lactobacilli, prevent biofilm formation by pathogenic Candida. Nelson J; El-Gendy AO; Mansy MS; Ramadan MA; Aziz RK FEMS Microbiol Lett; 2020 Aug; 367(15):. PubMed ID: 32710776 [TBL] [Abstract][Full Text] [Related]
44. A surface-active agent from Saccharomyces cerevisiae influences staphylococcal adhesion and biofilm development. Walencka E; Wieckowska-Szakiel M; Rozalska S; Sadowska B; Rozalska B Z Naturforsch C J Biosci; 2007; 62(5-6):433-8. PubMed ID: 17708451 [TBL] [Abstract][Full Text] [Related]
45. Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates. Sharifi A; Mohammadzadeh A; Zahraei Salehi T; Mahmoodi P J Appl Microbiol; 2018 Feb; 124(2):379-388. PubMed ID: 29144601 [TBL] [Abstract][Full Text] [Related]
46. Medical-Grade Silicone Coated with Rhamnolipid R89 Is Effective against Ceresa C; Tessarolo F; Maniglio D; Tambone E; Carmagnola I; Fedeli E; Caola I; Nollo G; Chiono V; Allegrone G; Rinaldi M; Fracchia L Molecules; 2019 Oct; 24(21):. PubMed ID: 31731408 [No Abstract] [Full Text] [Related]
47. Bioemulsifier from sponge-associated bacteria reduces staphylococcal biofilm. Dias GR; Freitas-Silva J; de Carvalho MM; Ramos VFDS; Muricy G; Rodrigues JCF; Costa BRFV; de Oliveira BFR; Laport MS Microb Pathog; 2024 Oct; 195():106856. PubMed ID: 39153576 [TBL] [Abstract][Full Text] [Related]
48. Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Park JH; Lee JH; Kim CJ; Lee JC; Cho MH; Lee J Biotechnol Lett; 2012 Apr; 34(4):655-61. PubMed ID: 22160331 [TBL] [Abstract][Full Text] [Related]
49. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm. Ciandrini E; Campana R; Casettari L; Perinelli DR; Fagioli L; Manti A; Palmieri GF; Papa S; Baffone W Appl Microbiol Biotechnol; 2016 Aug; 100(15):6767-6777. PubMed ID: 27102127 [TBL] [Abstract][Full Text] [Related]
50. Antimicrobial Activity of Punicalagin Against Staphylococcus aureus and Its Effect on Biofilm Formation. Xu Y; Shi C; Wu Q; Zheng Z; Liu P; Li G; Peng X; Xia X Foodborne Pathog Dis; 2017 May; 14(5):282-287. PubMed ID: 28128637 [TBL] [Abstract][Full Text] [Related]
51. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus. Ma R; Qiu S; Jiang Q; Sun H; Xue T; Cai G; Sun B Int J Med Microbiol; 2017 Jun; 307(4-5):257-267. PubMed ID: 28416278 [TBL] [Abstract][Full Text] [Related]
52. Temperature-dependent control of Staphylococcus aureus biofilms and virulence by thermoresponsive oligo(N-vinylcaprolactam). Lee JH; Kim YG; Lee K; Kim SC; Lee J Biotechnol Bioeng; 2015 Apr; 112(4):716-24. PubMed ID: 25407932 [TBL] [Abstract][Full Text] [Related]
53. Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. Satpute SK; Mone NS; Das P; Banat IM; Banpurkar AG BMC Microbiol; 2019 Feb; 19(1):39. PubMed ID: 30760203 [TBL] [Abstract][Full Text] [Related]
54. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Lee JH; Park JH; Cho HS; Joo SW; Cho MH; Lee J Biofouling; 2013; 29(5):491-9. PubMed ID: 23668380 [TBL] [Abstract][Full Text] [Related]
55. New properties of wheat bran: anti-biofilm activity and interference with bacteria quorum-sensing systems. González-Ortiz G; Quarles Van Ufford HC; Halkes SB; Cerdà-Cuéllar M; Beukelman CJ; Pieters RJ; Liskamp RM; Pérez JF; Martín-Orue SM Environ Microbiol; 2014 May; 16(5):1346-53. PubMed ID: 24588934 [TBL] [Abstract][Full Text] [Related]
59. Antibiofilm mechanism of a novel milk-derived antimicrobial peptide against Staphylococcus aureus by downregulating agr quorum sensing system. Li Y; Li S; Yang K; Guo R; Zhu X; Shi Y; Huang A J Appl Microbiol; 2022 Oct; 133(4):2198-2209. PubMed ID: 35661493 [TBL] [Abstract][Full Text] [Related]
60. Evaluation antibacterial and antibiofilm activity of the antimicrobial peptide P34 against Staphylococcus aureus and Enterococcus faecalis. Costa GA; Rossatto FCP; Medeiros AW; Correa APF; Brandelli A; Frazzon APG; Motta ASD An Acad Bras Cienc; 2018; 90(1):73-84. PubMed ID: 29424388 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]