BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30496939)

  • 1. Wheeze type classification using non-dyadic wavelet transform based optimal energy ratio technique.
    Ulukaya S; Serbes G; Kahya YP
    Comput Biol Med; 2019 Jan; 104():175-182. PubMed ID: 30496939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature extraction using time-frequency analysis for monophonic-polyphonic wheeze discrimination.
    Ulukaya S; Sen I; Kahya YP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5412-5. PubMed ID: 26737515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lung sounds classification using convolutional neural networks.
    Bardou D; Zhang K; Ahmad SM
    Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance based separation and energy based classification of lung sounds using tunable wavelet transform.
    Ulukaya S; Serbes G; Kahya YP
    Comput Biol Med; 2021 Apr; 131():104288. PubMed ID: 33676336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of wheeze sounds using cepstral analysis and neural networks.
    Hashemi A; Arabalibeik H; Agin K
    Stud Health Technol Inform; 2012; 173():161-5. PubMed ID: 22356979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of wheezes using wavelet higher order spectral features.
    Taplidou SA; Hadjileontiadis LJ
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1596-610. PubMed ID: 20176540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lung sound classification system based on the rational dilation wavelet transform.
    Ulukaya S; Serbes G; Sen I; Kahya YP
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3745-3748. PubMed ID: 28269104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.
    Chen H; Yuan X; Li J; Pei Z; Zheng X
    Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monophonic and Polyphonic Wheezing Classification Based on Constrained Low-Rank Non-Negative Matrix Factorization.
    De La Torre Cruz J; Cañadas Quesada FJ; Ruiz Reyes N; García Galán S; Carabias Orti JJ; Peréz Chica G
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33670892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of respiratory sounds based on wavelet packet decomposition and learning vector quantization.
    Pesu L; Helistö P; Ademovic E; Pesquet JC; Saarinen A; Sovijärvi AR
    Technol Health Care; 1998 Jun; 6(1):65-74. PubMed ID: 9754685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of SVM and GMM-Based Classifier Configurations for Diagnostic Classification of Pulmonary Sounds.
    Sen I; Saraclar M; Kahya YP
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1768-76. PubMed ID: 25700439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification of pulmonary pathology from breath sounds using the wavelet packet transform and an extreme learning machine.
    Palaniappan R; Sundaraj K; Sundaraj S; Huliraj N; Revadi SS
    Biomed Tech (Berl); 2018 Jul; 63(4):383-394. PubMed ID: 28596461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes.
    Bahoura M
    Comput Biol Med; 2009 Sep; 39(9):824-43. PubMed ID: 19631934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichannel lung sound analysis for asthma detection.
    Islam MA; Bandyopadhyaya I; Bhattacharyya P; Saha G
    Comput Methods Programs Biomed; 2018 Jun; 159():111-123. PubMed ID: 29650306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VR motion sickness recognition by using EEG rhythm energy ratio based on wavelet packet transform.
    Li X; Zhu C; Xu C; Zhu J; Li Y; Wu S
    Comput Methods Programs Biomed; 2020 May; 188():105266. PubMed ID: 31865095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lung sound classification using cepstral-based statistical features.
    Sengupta N; Sahidullah M; Saha G
    Comput Biol Med; 2016 Aug; 75():118-29. PubMed ID: 27286184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of lung sounds using higher-order statistics: A divide-and-conquer approach.
    Naves R; Barbosa BH; Ferreira DD
    Comput Methods Programs Biomed; 2016 Jun; 129():12-20. PubMed ID: 27084316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of embolic signals with directional dual tree rational dilation wavelet transform.
    Serbes G; Aydin N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3821-3824. PubMed ID: 28269119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear analysis of wheezes using wavelet bicoherence.
    Taplidou SA; Hadjileontiadis LJ
    Comput Biol Med; 2007 Apr; 37(4):563-70. PubMed ID: 17010961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.