These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 30497045)
1. A viable approach for commercial VFAs production from sludge: Liquid fermentation in anaerobic dynamic membrane reactor. Liu H; Wang L; Zhang X; Fu B; Liu H; Li Y; Lu X J Hazard Mater; 2019 Mar; 365():912-920. PubMed ID: 30497045 [TBL] [Abstract][Full Text] [Related]
2. Continuous liquid fermentation of pretreated waste activated sludge for high rate volatile fatty acids production and online nutrients recovery. Zhang L; Liu H; Zheng Z; Ma H; Yang M; Liu H Bioresour Technol; 2018 Feb; 249():962-968. PubMed ID: 29145123 [TBL] [Abstract][Full Text] [Related]
3. [Bioproduction of volatile fatty acids from excess municipal sludge by multistage countercurrent fermentation]. Guo L; Liu H; Li X; Du G; Chen J Sheng Wu Gong Cheng Xue Bao; 2008 Jul; 24(7):1233-9. PubMed ID: 18837401 [TBL] [Abstract][Full Text] [Related]
4. Deep exploitation of refractory organics in anaerobic dynamic membrane bioreactor for volatile fatty acids production from sludge fermentation: Performance and effect of protease catalysis. Liu H; Wang L; Yin B; Fu B; Liu H J Environ Manage; 2018 Jul; 217():478-485. PubMed ID: 29631237 [TBL] [Abstract][Full Text] [Related]
5. Volatile fatty acids productivity by anaerobic co-digesting waste activated sludge and corn straw: effect of feedstock proportion. Zhou A; Guo Z; Yang C; Kong F; Liu W; Wang A J Biotechnol; 2013 Oct; 168(2):234-9. PubMed ID: 23751505 [TBL] [Abstract][Full Text] [Related]
6. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
7. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate. Magdalena JA; Greses S; González-Fernández C Sci Rep; 2019 Dec; 9(1):18374. PubMed ID: 31804573 [TBL] [Abstract][Full Text] [Related]
8. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Liu H; Han P; Liu H; Zhou G; Fu B; Zheng Z Bioresour Technol; 2018 Jul; 260():105-114. PubMed ID: 29625281 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Feng L; Chen Y; Zheng X Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649 [TBL] [Abstract][Full Text] [Related]
10. Upgrading volatile fatty acids production through anaerobic co-fermentation of mushroom residue and sewage sludge: Performance evaluation and kinetic analysis. Fang W; Zhang P; Zhang T; Requeson DC; Poser M J Environ Manage; 2019 Jul; 241():612-618. PubMed ID: 30962005 [TBL] [Abstract][Full Text] [Related]
11. Volatile fatty acids production from kitchen waste slurry using anaerobic membrane bioreactor via alkaline fermentation with high salinity: Evaluation on process performance and microbial succession. Xiao X; Hu H; Meng X; Huang Z; Feng Y; Gao Q; Ruan W Bioresour Technol; 2024 May; 399():130576. PubMed ID: 38479625 [TBL] [Abstract][Full Text] [Related]
12. Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation. Huang X; Xu Q; Wu Y; Wang D; Yang Q; Chen F; Wu Y; Pi Z; Chen Z; Li X; Zhong Q Bioresour Technol; 2019 Sep; 288():121598. PubMed ID: 31176944 [TBL] [Abstract][Full Text] [Related]
13. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH? Ma H; Chen X; Liu H; Liu H; Fu B Waste Manag; 2016 Feb; 48():397-403. PubMed ID: 26652215 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic valorization of sewage sludge pretreated through hydrothermal carbonization: Volatile fatty acids and biomethane production. Grana M; Riboli G; Tatangelo V; Mantovani M; Gandolfi I; Turolla A; Ficara E Bioresour Technol; 2024 Nov; 412():131279. PubMed ID: 39151568 [TBL] [Abstract][Full Text] [Related]
15. Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources. Li Y; Xu H; Hua D; Zhao B; Mu H; Jin F; Meng G; Fang X Sci Total Environ; 2020 Jan; 699():134226. PubMed ID: 31683212 [TBL] [Abstract][Full Text] [Related]
16. Influence of sulfadiazine on anaerobic fermentation of waste activated sludge for volatile fatty acids production: Focusing on microbial responses. Xie J; Duan X; Feng L; Yan Y; Wang F; Dong H; Jia R; Zhou Q Chemosphere; 2019 Mar; 219():305-312. PubMed ID: 30543966 [TBL] [Abstract][Full Text] [Related]
17. Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion. Zhai S; Li M; Xiong Y; Wang D; Fu S Bioresour Technol; 2020 Nov; 316():123903. PubMed ID: 32763801 [TBL] [Abstract][Full Text] [Related]
18. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids. Lin L; Li XY Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135 [TBL] [Abstract][Full Text] [Related]
19. Improving volatile fatty acid yield from sludge anaerobic fermentation through self-forming dynamic membrane separation. Liu H; Wang Y; Yin B; Zhu Y; Fu B; Liu H Bioresour Technol; 2016 Oct; 218():92-100. PubMed ID: 27347803 [TBL] [Abstract][Full Text] [Related]
20. High rejection rate of polysaccharides by microfiltration benefits Christensenella minuta and acetic acid production in an anaerobic membrane bioreactor for sludge fermentation. Gao X; Zhang Q; Zhu H Bioresour Technol; 2019 Jun; 282():197-201. PubMed ID: 30861449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]