These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30497265)

  • 1. Design of Iron Coordination Complexes as Highly Active Homogenous Water Oxidation Catalysts by Deuteration of Oxidation-Sensitive Sites.
    Codolà Z; Gamba I; Acuña-Parés F; Casadevall C; Clémancey M; Latour JM; Luis JM; Lloret-Fillol J; Costas M
    J Am Chem Soc; 2019 Jan; 141(1):323-333. PubMed ID: 30497265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the mechanism of water oxidation catalyzed by nonheme iron complexes.
    Acuña-Parés F; Codolà Z; Costas M; Luis JM; Lloret-Fillol J
    Chemistry; 2014 May; 20(19):5696-707. PubMed ID: 24668499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocatalytic Water Oxidation with α-[Fe(mcp)(OTf)
    D'Agostini S; Kottrup KG; Casadevall C; Gamba I; Dantignana V; Bucci A; Costas M; Lloret-Fillol J; Hetterscheid DGH
    ACS Catal; 2021 Mar; 11(5):2583-2595. PubMed ID: 33815893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust iron coordination complexes with N-based neutral ligands as efficient Fenton-like catalysts at neutral pH.
    Canals M; Gonzalez-Olmos R; Costas M; Company A
    Environ Sci Technol; 2013 Sep; 47(17):9918-27. PubMed ID: 23895017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond.
    Sun W; Sun Q
    Acc Chem Res; 2019 Aug; 52(8):2370-2381. PubMed ID: 31333021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic investigation and direct comparison of the reactivities of iron pyridyl oxidation catalysts.
    Song Y; Mayes HG; Queensen MJ; Bauer EB; Dupureur CM
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():130-137. PubMed ID: 27889672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of the water oxidation mechanism with non-heme Fe(Pytacn) iron complexes. Evidence that the Fe(IV)(O)(Pytacn) species cannot react with the water molecule to form the O-O bond.
    Acuña-Parés F; Costas M; Luis JM; Lloret-Fillol J
    Inorg Chem; 2014 Jun; 53(11):5474-85. PubMed ID: 24816178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?
    Hong D; Mandal S; Yamada Y; Lee YM; Nam W; Llobet A; Fukuzumi S
    Inorg Chem; 2013 Aug; 52(16):9522-31. PubMed ID: 23895380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand topology variations and the importance of ligand field strength in non-heme iron catalyzed oxidations of alkanes.
    England J; Britovsek GJ; Rabadia N; White AJ
    Inorg Chem; 2007 Apr; 46(9):3752-67. PubMed ID: 17411032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel(II) complexes of tripodal 4N ligands as catalysts for alkane oxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis.
    Balamurugan M; Mayilmurugan R; Suresh E; Palaniandavar M
    Dalton Trans; 2011 Oct; 40(37):9413-24. PubMed ID: 21850329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand topology effects on olefin oxidations by bio-inspired [FeII(N2Py2)] catalysts.
    Mas-Ballesté R; Costas M; van den Berg T; Que L
    Chemistry; 2006 Sep; 12(28):7489-500. PubMed ID: 16871511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-Catalyzed Oxidation of 1-Phenylethanol and Glycerol With Hydrogen Peroxide in Water Medium: Effect of the Nitrogen Ligand on Catalytic Activity and Selectivity.
    Ros D; Gianferrara T; Crotti C; Farnetti E
    Front Chem; 2020; 8():810. PubMed ID: 33195031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. μ-Nitrido Diiron Macrocyclic Platform: Particular Structure for Particular Catalysis.
    Afanasiev P; Sorokin AB
    Acc Chem Res; 2016 Apr; 49(4):583-93. PubMed ID: 26967682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regioselective oxidation of nonactivated alkyl C-H groups using highly structured non-heme iron catalysts.
    Gómez L; Canta M; Font D; Prat I; Ribas X; Costas M
    J Org Chem; 2013 Feb; 78(4):1421-33. PubMed ID: 23301685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron(III) complexes of tripodal tetradentate 4N ligands as functional models for catechol dioxygenases: the electronic vs. steric effect on extradiol cleavage.
    Balamurugan M; Vadivelu P; Palaniandavar M
    Dalton Trans; 2014 Oct; 43(39):14653-68. PubMed ID: 25143993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mononuclear Nonheme Iron(IV)-Oxo Complex of a Substituted N4Py Ligand: Effect of Ligand Field on Oxygen Atom Transfer and C-H Bond Cleavage Reactivity.
    Singh R; Ganguly G; Malinkin SO; Demeshko S; Meyer F; Nordlander E; Paine TK
    Inorg Chem; 2019 Feb; 58(3):1862-1876. PubMed ID: 30644733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional investigation of the water oxidation by iron complexes based on tetradentate nitrogen ligands.
    Kasapbasi EE; Whangbo MH
    Inorg Chem; 2012 Oct; 51(20):10850-5. PubMed ID: 23025899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling features of the non-heme diiron cores in O2-activating enzymes through the synthesis, characterization, and oxidation of 1,8-naphthyridine-based complexes.
    Kuzelka J; Mukhopadhyay S; Spingler B; Lippard SJ
    Inorg Chem; 2003 Oct; 42(20):6447-57. PubMed ID: 14514321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.