These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 30497380)
41. The lipopolysaccharide (LPS) of Photorhabdus luminescens TT01 can elicit dose- and time-dependent immune priming in Galleria mellonella larvae. Wu G; Yi Y; Lv Y; Li M; Wang J; Qiu L J Invertebr Pathol; 2015 May; 127():63-72. PubMed ID: 25796336 [TBL] [Abstract][Full Text] [Related]
42. A Phosphopantetheinyl transferase homolog is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematode Heterorhabditis bacteriophora. Ciche TA; Bintrim SB; Horswill AR; Ensign JC J Bacteriol; 2001 May; 183(10):3117-26. PubMed ID: 11325940 [TBL] [Abstract][Full Text] [Related]
43. Expression and activity of a probable toxin from Photorhabdus luminescens. Li M; Wu G; Liu C; Chen Y; Qiu L; Pang Y Mol Biol Rep; 2009 Apr; 36(4):785-90. PubMed ID: 18409059 [TBL] [Abstract][Full Text] [Related]
44. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence. Ffrench-Constant RH; Waterfield N; Burland V; Perna NT; Daborn PJ; Bowen D; Blattner FR Appl Environ Microbiol; 2000 Aug; 66(8):3310-29. PubMed ID: 10919786 [TBL] [Abstract][Full Text] [Related]
45. Phenotypic Heterogeneity of the Insect Pathogen Photorhabdus luminescens: Insights into the Fate of Secondary Cells. Eckstein S; Dominelli N; Brachmann A; Heermann R Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492667 [No Abstract] [Full Text] [Related]
46. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses. Wu G; Xu L; Yi Y Immunol Lett; 2016 Jun; 174():45-52. PubMed ID: 27107784 [TBL] [Abstract][Full Text] [Related]
47. XaxAB-like binary toxin from Photorhabdus luminescens exhibits both insecticidal activity and cytotoxicity. Zhang X; Hu X; Li Y; Ding X; Yang Q; Sun Y; Yu Z; Xia L; Hu S FEMS Microbiol Lett; 2014 Jan; 350(1):48-56. PubMed ID: 24188660 [TBL] [Abstract][Full Text] [Related]
48. The xnp1 P2-like tail synthesis gene cluster encodes xenorhabdicin and is required for interspecies competition. Morales-Soto N; Forst SA J Bacteriol; 2011 Jul; 193(14):3624-32. PubMed ID: 21602326 [TBL] [Abstract][Full Text] [Related]
49. Strains of Photorhabdus spp. associated with polish Heterorhabditis isolates: their molecular and phenotypic characterization and symbiont exchange. Kazimierczak W; Skrzypek H; Sajnaga E; Skowronek M; Waśko A; Kreft A Arch Microbiol; 2017 Sep; 199(7):979-989. PubMed ID: 28382473 [TBL] [Abstract][Full Text] [Related]
50. Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (γ-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Orozco RA; Hill T; Stock SP Curr Microbiol; 2013 Jan; 66(1):30-9. PubMed ID: 23053483 [TBL] [Abstract][Full Text] [Related]
51. Priming Galleria mellonella (Lepidoptera: Pyralidae) larvae with heat-killed bacterial cells induced an enhanced immune protection against Photorhabdus luminescens TT01 and the role of innate immunity in the process. Wu G; Zhao Z; Liu C; Qiu L J Econ Entomol; 2014 Apr; 107(2):559-69. PubMed ID: 24772535 [TBL] [Abstract][Full Text] [Related]
52. HdfR is a regulator in Photorhabdus luminescens that modulates metabolism and symbiosis with the nematode Heterorhabditis. Easom CA; Clarke DJ Environ Microbiol; 2012 Apr; 14(4):953-66. PubMed ID: 22151606 [TBL] [Abstract][Full Text] [Related]
53. [Cloning, expression and insecticidal activity of the pirA2B2 gene from Photorhabdus luminescens TT01]. Sun J; Liu C; Qiu L Wei Sheng Wu Xue Bao; 2012 Apr; 52(4):532-7. PubMed ID: 22799220 [TBL] [Abstract][Full Text] [Related]
54. Involvement of Vitamin B6 Biosynthesis Pathways in the Insecticidal Activity of Photorhabdus luminescens. Sato K; Yoshiga T; Hasegawa K Appl Environ Microbiol; 2016 Jun; 82(12):3546-3553. PubMed ID: 27060119 [TBL] [Abstract][Full Text] [Related]
55. Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Brugirard-Ricaud K; Duchaud E; Givaudan A; Girard PA; Kunst F; Boemare N; Brehélin M; Zumbihl R Cell Microbiol; 2005 Mar; 7(3):363-71. PubMed ID: 15679839 [TBL] [Abstract][Full Text] [Related]
56. Elucidation of the Photorhabdus temperata Genome and Generation of a Transposon Mutant Library To Identify Motility Mutants Altered in Pathogenesis. Hurst S; Rowedder H; Michaels B; Bullock H; Jackobeck R; Abebe-Akele F; Durakovic U; Gately J; Janicki E; Tisa LS J Bacteriol; 2015 Jul; 197(13):2201-2216. PubMed ID: 25917908 [TBL] [Abstract][Full Text] [Related]
57. Regulation of Phenotypic Switching and Heterogeneity in Photorhabdus luminescens Cell Populations. Eckstein S; Heermann R J Mol Biol; 2019 Nov; 431(23):4559-4568. PubMed ID: 31022406 [TBL] [Abstract][Full Text] [Related]
58. The Biocontrol Agent and Insect Pathogen Photorhabdus luminescens Interacts with Plant Roots. Regaiolo A; Dominelli N; Andresen K; Heermann R Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591378 [TBL] [Abstract][Full Text] [Related]
59. Isolation, identification, and molecular characterization of strains of Photorhabdus luminescens from infected humans in Australia. Peel MM; Alfredson DA; Gerrard JG; Davis JM; Robson JM; McDougall RJ; Scullie BL; Akhurst RJ J Clin Microbiol; 1999 Nov; 37(11):3647-53. PubMed ID: 10523568 [TBL] [Abstract][Full Text] [Related]
60. Escherichia coli K-12 (pEGFPluxABCDEamp): a tool for analysis of bacterial killing by antibacterial agents and human complement activities on a real-time basis. Atosuo J; Lehtinen J; Vojtek L; Lilius EM Luminescence; 2013; 28(5):771-9. PubMed ID: 23129448 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]