These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 30497383)
1. Aggregation of experts: an application in the field of "interactomics" (detection of interactions on the basis of genomic data). Abo Alchamlat S; Farnir F BMC Bioinformatics; 2018 Nov; 19(1):445. PubMed ID: 30497383 [TBL] [Abstract][Full Text] [Related]
2. KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies. Abo Alchamlat S; Farnir F BMC Bioinformatics; 2017 Mar; 18(1):184. PubMed ID: 28327091 [TBL] [Abstract][Full Text] [Related]
3. MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study. Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W BMC Bioinformatics; 2009 Jan; 10():13. PubMed ID: 19134182 [TBL] [Abstract][Full Text] [Related]
4. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies. Wan X; Yang C; Yang Q; Xue H; Fan X; Tang NL; Yu W Am J Hum Genet; 2010 Sep; 87(3):325-40. PubMed ID: 20817139 [TBL] [Abstract][Full Text] [Related]
5. Performance of epistasis detection methods in semi-simulated GWAS. Chatelain C; Durand G; Thuillier V; Augé F BMC Bioinformatics; 2018 Jun; 19(1):231. PubMed ID: 29914375 [TBL] [Abstract][Full Text] [Related]
6. Enabling personal genomics with an explicit test of epistasis. Greene CS; Himmelstein DS; Nelson HH; Kelsey KT; Williams SM; Andrew AS; Karagas MR; Moore JH Pac Symp Biocomput; 2010; ():327-36. PubMed ID: 19908385 [TBL] [Abstract][Full Text] [Related]
7. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies. Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428 [TBL] [Abstract][Full Text] [Related]
8. A rapid epistatic mixed-model association analysis by linear retransformations of genomic estimated values. Ning C; Wang D; Kang H; Mrode R; Zhou L; Xu S; Liu JF Bioinformatics; 2018 Jun; 34(11):1817-1825. PubMed ID: 29342229 [TBL] [Abstract][Full Text] [Related]
9. Epistasis Test in Meta-Analysis: A Multi-Parameter Markov Chain Monte Carlo Model for Consistency of Evidence. Lin C; Chu CM; Su SL PLoS One; 2016; 11(4):e0152891. PubMed ID: 27045371 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of methods for detecting interacting loci. Chen L; Yu G; Langefeld CD; Miller DJ; Guy RT; Raghuram J; Yuan X; Herrington DM; Wang Y BMC Genomics; 2011 Jul; 12():344. PubMed ID: 21729295 [TBL] [Abstract][Full Text] [Related]
11. A unified model based multifactor dimensionality reduction framework for detecting gene-gene interactions. Yu W; Lee S; Park T Bioinformatics; 2016 Sep; 32(17):i605-i610. PubMed ID: 27587680 [TBL] [Abstract][Full Text] [Related]
12. Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models. Russ D; Williams JA; Cardoso VR; Bravo-Merodio L; Pendleton SC; Aziz F; Acharjee A; Gkoutos GV PLoS One; 2022; 17(2):e0263390. PubMed ID: 35180244 [TBL] [Abstract][Full Text] [Related]
13. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering. Guo X; Meng Y; Yu N; Pan Y BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145 [TBL] [Abstract][Full Text] [Related]
14. Functional regression method for whole genome eQTL epistasis analysis with sequencing data. Xu K; Jin L; Xiong M BMC Genomics; 2017 May; 18(1):385. PubMed ID: 28521784 [TBL] [Abstract][Full Text] [Related]
15. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure. Leem S; Jeong HH; Lee J; Wee K; Sohn KA Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733 [TBL] [Abstract][Full Text] [Related]
16. A deep hybrid model to detect multi-locus interacting SNPs in the presence of noise. Uppu S; Krishna A Int J Med Inform; 2018 Nov; 119():134-151. PubMed ID: 30342681 [TBL] [Abstract][Full Text] [Related]
17. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
18. MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment. Zhu S; Fang G Bioinformatics; 2018 Jul; 34(14):2341-2348. PubMed ID: 29509873 [TBL] [Abstract][Full Text] [Related]
19. GLIDE: GPU-based linear regression for detection of epistasis. Kam-Thong T; Azencott CA; Cayton L; Pütz B; Altmann A; Karbalai N; Sämann PG; Schölkopf B; Müller-Myhsok B; Borgwardt KM Hum Hered; 2012; 73(4):220-36. PubMed ID: 22965145 [TBL] [Abstract][Full Text] [Related]
20. EigenGWAS: finding loci under selection through genome-wide association studies of eigenvectors in structured populations. Chen GB; Lee SH; Zhu ZX; Benyamin B; Robinson MR Heredity (Edinb); 2016 Jul; 117(1):51-61. PubMed ID: 27142779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]