BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30497383)

  • 1. Aggregation of experts: an application in the field of "interactomics" (detection of interactions on the basis of genomic data).
    Abo Alchamlat S; Farnir F
    BMC Bioinformatics; 2018 Nov; 19(1):445. PubMed ID: 30497383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies.
    Abo Alchamlat S; Farnir F
    BMC Bioinformatics; 2017 Mar; 18(1):184. PubMed ID: 28327091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    BMC Bioinformatics; 2009 Jan; 10():13. PubMed ID: 19134182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies.
    Wan X; Yang C; Yang Q; Xue H; Fan X; Tang NL; Yu W
    Am J Hum Genet; 2010 Sep; 87(3):325-40. PubMed ID: 20817139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of epistasis detection methods in semi-simulated GWAS.
    Chatelain C; Durand G; Thuillier V; Augé F
    BMC Bioinformatics; 2018 Jun; 19(1):231. PubMed ID: 29914375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling personal genomics with an explicit test of epistasis.
    Greene CS; Himmelstein DS; Nelson HH; Kelsey KT; Williams SM; Andrew AS; Karagas MR; Moore JH
    Pac Symp Biocomput; 2010; ():327-36. PubMed ID: 19908385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rapid epistatic mixed-model association analysis by linear retransformations of genomic estimated values.
    Ning C; Wang D; Kang H; Mrode R; Zhou L; Xu S; Liu JF
    Bioinformatics; 2018 Jun; 34(11):1817-1825. PubMed ID: 29342229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epistasis Test in Meta-Analysis: A Multi-Parameter Markov Chain Monte Carlo Model for Consistency of Evidence.
    Lin C; Chu CM; Su SL
    PLoS One; 2016; 11(4):e0152891. PubMed ID: 27045371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of methods for detecting interacting loci.
    Chen L; Yu G; Langefeld CD; Miller DJ; Guy RT; Raghuram J; Yuan X; Herrington DM; Wang Y
    BMC Genomics; 2011 Jul; 12():344. PubMed ID: 21729295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified model based multifactor dimensionality reduction framework for detecting gene-gene interactions.
    Yu W; Lee S; Park T
    Bioinformatics; 2016 Sep; 32(17):i605-i610. PubMed ID: 27587680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models.
    Russ D; Williams JA; Cardoso VR; Bravo-Merodio L; Pendleton SC; Aziz F; Acharjee A; Gkoutos GV
    PLoS One; 2022; 17(2):e0263390. PubMed ID: 35180244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
    Guo X; Meng Y; Yu N; Pan Y
    BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.
    Xu K; Jin L; Xiong M
    BMC Genomics; 2017 May; 18(1):385. PubMed ID: 28521784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure.
    Leem S; Jeong HH; Lee J; Wee K; Sohn KA
    Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep hybrid model to detect multi-locus interacting SNPs in the presence of noise.
    Uppu S; Krishna A
    Int J Med Inform; 2018 Nov; 119():134-151. PubMed ID: 30342681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment.
    Zhu S; Fang G
    Bioinformatics; 2018 Jul; 34(14):2341-2348. PubMed ID: 29509873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GLIDE: GPU-based linear regression for detection of epistasis.
    Kam-Thong T; Azencott CA; Cayton L; Pütz B; Altmann A; Karbalai N; Sämann PG; Schölkopf B; Müller-Myhsok B; Borgwardt KM
    Hum Hered; 2012; 73(4):220-36. PubMed ID: 22965145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EigenGWAS: finding loci under selection through genome-wide association studies of eigenvectors in structured populations.
    Chen GB; Lee SH; Zhu ZX; Benyamin B; Robinson MR
    Heredity (Edinb); 2016 Jul; 117(1):51-61. PubMed ID: 27142779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.