These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30497383)

  • 21. Research on single nucleotide polymorphisms interaction detection from network perspective.
    Su L; Liu G; Wang H; Tian Y; Zhou Z; Han L; Yan L
    PLoS One; 2015; 10(3):e0119146. PubMed ID: 25763929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Informative Bayesian Model Selection: a method for identifying interactions in genome-wide data.
    Aflakparast M; Masoudi-Nejad A; Bozorgmehr JH; Visweswaran S
    Mol Biosyst; 2014 Oct; 10(10):2654-62. PubMed ID: 25070634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using biological networks to search for interacting loci in genome-wide association studies.
    Emily M; Mailund T; Hein J; Schauser L; Schierup MH
    Eur J Hum Genet; 2009 Oct; 17(10):1231-40. PubMed ID: 19277065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of Existing Methods for High-Order Epistasis Detection.
    Ponte-Fernandez C; Gonzalez-Dominguez J; Carvajal-Rodriguez A; Martin MJ
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):912-926. PubMed ID: 33055017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eigen-Epistasis for detecting gene-gene interactions.
    Stanislas V; Dalmasso C; Ambroise C
    BMC Bioinformatics; 2017 Jan; 18(1):54. PubMed ID: 28114904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals.
    Cattaert T; Urrea V; Naj AC; De Lobel L; De Wit V; Fu M; Mahachie John JM; Shen H; Calle ML; Ritchie MD; Edwards TL; Van Steen K
    PLoS One; 2010 Apr; 5(4):e10304. PubMed ID: 20421984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies.
    Emily M
    Stat Appl Genet Mol Biol; 2016 Apr; 15(2):151-71. PubMed ID: 26913459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Jackknife-based gene-gene interactiontests for untyped SNPs.
    Song M
    BMC Genet; 2015 Jul; 16():85. PubMed ID: 26187382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A knowledge-based method for association studies on complex diseases.
    Nazarian A; Sichtig H; Riva A
    PLoS One; 2012; 7(9):e44162. PubMed ID: 22970175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies.
    Emily M
    Stat Med; 2012 Sep; 31(21):2359-73. PubMed ID: 22711278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient algorithm to perform multiple testing in epistasis screening.
    Van Lishout F; Mahachie John JM; Gusareva ES; Urrea V; Cleynen I; Théâtre E; Charloteaux B; Calle ML; Wehenkel L; Van Steen K
    BMC Bioinformatics; 2013 Apr; 14():138. PubMed ID: 23617239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TSGSIS: a high-dimensional grouped variable selection approach for detection of whole-genome SNP-SNP interactions.
    Fang YH; Wang JH; Hsiung CA
    Bioinformatics; 2017 Nov; 33(22):3595-3602. PubMed ID: 28651334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modified entropy-based procedure detects gene-gene-interactions in unconventional genetic models.
    Malten J; König IR
    BMC Med Genomics; 2020 Apr; 13(1):65. PubMed ID: 32326960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maximal Information Coefficient-Based Testing to Identify Epistasis in Case-Control Association Studies.
    Guo Y; Yuan Z; Liang Z; Wang Y; Wang Y; Xu L
    Comput Math Methods Med; 2022; 2022():7843990. PubMed ID: 35211187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A powerful and efficient two-stage method for detecting gene-to-gene interactions in GWAS.
    Pecanka J; Jonker MA; ; Bochdanovits Z; Van Der Vaart AW
    Biostatistics; 2017 Jul; 18(3):477-494. PubMed ID: 28334077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid testing of gene-gene interactions in genome-wide association studies of binary and quantitative phenotypes.
    Bhattacharya K; McCarthy MI; Morris AP
    Genet Epidemiol; 2011 Dec; 35(8):800-8. PubMed ID: 21948692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Definition of arthritis candidate risk genes by combining rat linkage-mapping results with human case-control association data.
    Bäckdahl L; Guo JP; Jagodic M; Becanovic K; Ding B; Olsson T; Lorentzen JC
    Ann Rheum Dis; 2009 Dec; 68(12):1925-32. PubMed ID: 19066175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping the genetic architecture of complex traits in experimental populations.
    Yang J; Zhu J; Williams RW
    Bioinformatics; 2007 Jun; 23(12):1527-36. PubMed ID: 17459962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.