BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 30497856)

  • 21. An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: an update.
    Banerjee S; Roy S
    Cell Cycle; 2021 Sep; 20(18):1760-1784. PubMed ID: 34437813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome destabilization by homologous recombination in the germ line.
    Sasaki M; Lange J; Keeney S
    Nat Rev Mol Cell Biol; 2010 Mar; 11(3):182-95. PubMed ID: 20164840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical and Genetic Assays for the Study of DNA Joint Molecules Metabolism and Multi-invasion-Induced Rearrangements in S. cerevisiae.
    Piazza A; Rajput P; Heyer WD
    Methods Mol Biol; 2021; 2153():535-554. PubMed ID: 32840803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromosomal Rearrangements and Chromothripsis: The Alternative End Generation Model.
    de Groot D; Spanjaard A; Hogenbirk MA; Jacobs H
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA-pairing and annealing processes in homologous recombination and homology-directed repair.
    Morrical SW
    Cold Spring Harb Perspect Biol; 2015 Feb; 7(2):a016444. PubMed ID: 25646379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Paths from DNA damage and signaling to genome rearrangements via homologous recombination.
    Nickoloff JA
    Mutat Res; 2017 Dec; 806():64-74. PubMed ID: 28779875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.
    Kloosterman WP; Tavakoli-Yaraki M; van Roosmalen MJ; van Binsbergen E; Renkens I; Duran K; Ballarati L; Vergult S; Giardino D; Hansson K; Ruivenkamp CA; Jager M; van Haeringen A; Ippel EF; Haaf T; Passarge E; Hochstenbach R; Menten B; Larizza L; Guryev V; Poot M; Cuppen E
    Cell Rep; 2012 Jun; 1(6):648-55. PubMed ID: 22813740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromothripsis: how does such a catastrophic event impact human reproduction?
    Pellestor F
    Hum Reprod; 2014 Mar; 29(3):388-93. PubMed ID: 24452388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosome End Repair and Genome Stability in
    Calhoun SF; Reed J; Alexander N; Mason CE; Deitsch KW; Kirkman LA
    mBio; 2017 Aug; 8(4):. PubMed ID: 28790200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders.
    Sankaranarayanan K; Wassom JS
    Mutat Res; 2005 Oct; 578(1-2):333-70. PubMed ID: 16084534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homologous recombination and the repair of DNA double-strand breaks.
    Wright WD; Shah SS; Heyer WD
    J Biol Chem; 2018 Jul; 293(27):10524-10535. PubMed ID: 29599286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromoanagenesis, the mechanisms of a genomic chaos.
    Pellestor F; Gaillard JB; Schneider A; Puechberty J; Gatinois V
    Semin Cell Dev Biol; 2022 Mar; 123():90-99. PubMed ID: 33608210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity.
    Hedges DJ; Deininger PL
    Mutat Res; 2007 Mar; 616(1-2):46-59. PubMed ID: 17157332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A cell-based model system links chromothripsis with hyperploidy.
    Mardin BR; Drainas AP; Waszak SM; Weischenfeldt J; Isokane M; Stütz AM; Raeder B; Efthymiopoulos T; Buccitelli C; Segura-Wang M; Northcott P; Pfister SM; Lichter P; Ellenberg J; Korbel JO
    Mol Syst Biol; 2015 Sep; 11(9):828. PubMed ID: 26415501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FANCJ compensates for RAP80 deficiency and suppresses genomic instability induced by interstrand cross-links.
    Awate S; Sommers JA; Datta A; Nayak S; Bellani MA; Yang O; Dunn CA; Nicolae CM; Moldovan GL; Seidman MM; Cantor SB; Brosh RM
    Nucleic Acids Res; 2020 Sep; 48(16):9161-9180. PubMed ID: 32797166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination.
    Nazaryan-Petersen L; Bertelsen B; Bak M; Jønson L; Tommerup N; Hancks DC; Tümer Z
    Hum Mutat; 2016 Apr; 37(4):385-95. PubMed ID: 26929209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic origins of diverse genome rearrangements in cancer.
    Dahiya R; Hu Q; Ly P
    Semin Cell Dev Biol; 2022 Mar; 123():100-109. PubMed ID: 33824062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Processing-Challenges Generated by Clusters of DNA Double-Strand Breaks Underpin Increased Effectiveness of High-LET Radiation and Chromothripsis.
    Mladenov E; Saha J; Iliakis G
    Adv Exp Med Biol; 2018; 1044():149-168. PubMed ID: 29956296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of DNA strand exchange in homologous recombination.
    Holthausen JT; Wyman C; Kanaar R
    DNA Repair (Amst); 2010 Dec; 9(12):1264-72. PubMed ID: 20971042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Established and Novel Mechanisms Leading to de novo Genomic Rearrangements in the Human Germline.
    Hattori A; Fukami M
    Cytogenet Genome Res; 2020; 160(4):167-176. PubMed ID: 32396893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.