BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30498132)

  • 1. Cadmium opens GluK2 kainate receptors with cysteine substitutions at the M3 helix bundle crossing.
    Wilding TJ; Huettner JE
    J Gen Physiol; 2019 Apr; 151(4):435-451. PubMed ID: 30498132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium activates AMPA and NMDA receptors with M3 helix cysteine substitutions.
    Wilding TJ; Huettner JE
    J Gen Physiol; 2020 Jul; 152(7):. PubMed ID: 32342094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Q/R site interactions with the M3 helix in GluK2 kainate receptor channels revealed by thermodynamic mutant cycles.
    Lopez MN; Wilding TJ; Huettner JE
    J Gen Physiol; 2013 Sep; 142(3):225-39. PubMed ID: 23940260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acid modulation and polyamine block of GluK2 kainate receptors analyzed by scanning mutagenesis.
    Wilding TJ; Chen K; Huettner JE
    J Gen Physiol; 2010 Sep; 136(3):339-52. PubMed ID: 20805577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subunit-specific desensitization of heteromeric kainate receptors.
    Mott DD; Rojas A; Fisher JL; Dingledine RJ; Benveniste M
    J Physiol; 2010 Feb; 588(Pt 4):683-700. PubMed ID: 20026616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly and Trafficking of Homomeric and Heteromeric Kainate Receptors with Impaired Ligand Binding Sites.
    Scholefield CL; Atlason PT; Jane DE; Molnár E
    Neurochem Res; 2019 Mar; 44(3):585-599. PubMed ID: 30302614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agonist binding to the GluK5 subunit is sufficient for functional surface expression of heteromeric GluK2/GluK5 kainate receptors.
    Fisher JL; Housley PR
    Cell Mol Neurobiol; 2013 Nov; 33(8):1099-108. PubMed ID: 23975096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kainate receptor channel opening and gating mechanism.
    Gangwar SP; Yelshanskaya MV; Nadezhdin KD; Yen LY; Newton TP; Aktolun M; Kurnikova MG; Sobolevsky AI
    Nature; 2024 Jun; 630(8017):762-768. PubMed ID: 38778115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of homomeric and heteromeric kainate receptors by the auxiliary subunit Neto1.
    Fisher JL; Mott DD
    J Physiol; 2013 Oct; 591(19):4711-24. PubMed ID: 23798491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of different kainate receptor subunits to the properties of recombinant homomeric and heteromeric receptors.
    Fisher MT; Fisher JL
    Neuroscience; 2014 Oct; 278():70-80. PubMed ID: 25139762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominance of the lurcher mutation in heteromeric kainate and AMPA receptor channels.
    Schwarz MK; Pawlak V; Osten P; Mack V; Seeburg PH; Köhr G
    Eur J Neurosci; 2001 Sep; 14(5):861-8. PubMed ID: 11576190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid substitutions in the pore helix of GluR6 control inhibition by membrane fatty acids.
    Wilding TJ; Fulling E; Zhou Y; Huettner JE
    J Gen Physiol; 2008 Jul; 132(1):85-99. PubMed ID: 18562501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of kainate receptor subunit ratios in mouse brain using novel chimeric protein standards.
    Watanabe-Iida I; Konno K; Akashi K; Abe M; Natsume R; Watanabe M; Sakimura K
    J Neurochem; 2016 Jan; 136(2):295-305. PubMed ID: 26448475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct functional roles of subunits within the heteromeric kainate receptor.
    Fisher JL; Mott DD
    J Neurosci; 2011 Nov; 31(47):17113-22. PubMed ID: 22114280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain organization and function in GluK2 subtype kainate receptors.
    Das U; Kumar J; Mayer ML; Plested AJ
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8463-8. PubMed ID: 20404149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loop G in the GABA
    Baptista-Hon DT; Gulbinaite S; Hales TG
    J Physiol; 2017 Mar; 595(5):1725-1741. PubMed ID: 27981574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agonist-induced changes in substituted cysteine accessibility reveal dynamic extracellular structure of M3-M4 loop of glutamate receptor GluR6.
    Basiry SS; Mendoza P; Lee PD; Raymond LA
    J Neurosci; 1999 Jan; 19(2):644-52. PubMed ID: 9880585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor.
    Khanra N; Brown PM; Perozzo AM; Bowie D; Meyerson JR
    Elife; 2021 Mar; 10():. PubMed ID: 33724189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic manipulation of key determinants of ion flow in glutamate receptor channels in the mouse.
    Seeburg PH; Single F; Kuner T; Higuchi M; Sprengel R
    Brain Res; 2001 Jul; 907(1-2):233-43. PubMed ID: 11430906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium-cysteine coordination in the BK inner pore region and its structural and functional implications.
    Zhou Y; Xia XM; Lingle CJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5237-42. PubMed ID: 25848005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.