These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30498222)

  • 1. Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and D-glucose from citrus peel waste.
    Protzko RJ; Latimer LN; Martinho Z; de Reus E; Seibert T; Benz JP; Dueber JE
    Nat Commun; 2018 Nov; 9(1):5059. PubMed ID: 30498222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The introduction of the fungal D-galacturonate pathway enables the consumption of D-galacturonic acid by Saccharomyces cerevisiae.
    Biz A; Sugai-Guérios MH; Kuivanen J; Maaheimo H; Krieger N; Mitchell DA; Richard P
    Microb Cell Fact; 2016 Aug; 15(1):144. PubMed ID: 27538689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae.
    Jeong D; Ye S; Park H; Kim SR
    Bioresour Technol; 2020 Jan; 295():122259. PubMed ID: 31639627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards valorization of pectin-rich agro-industrial residues: Engineering of Saccharomyces cerevisiae for co-fermentation of d-galacturonic acid and glycerol.
    Perpelea A; Wijaya AW; Martins LC; Rippert D; Klein M; Angelov A; Peltonen K; Teleki A; Liebl W; Richard P; Thevelein JM; Takors R; Sá-Correia I; Nevoigt E
    Metab Eng; 2022 Jan; 69():1-14. PubMed ID: 34648971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose.
    Huisjes EH; de Hulster E; van Dam JC; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2012 Aug; 78(15):5052-9. PubMed ID: 22582063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-Galacturonic acid reduction by S. cerevisiae for L-galactonate production from extracted sugar beet press pulp hydrolysate.
    Wagner J; Schäfer D; von den Eichen N; Haimerl C; Harth S; Oreb M; Benz JP; Weuster-Botz D
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5795-5807. PubMed ID: 34268581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the Aldo-Keto Reductase Responsible for d-Galacturonic Acid Conversion to l-Galactonate in
    Rippert D; Linguardo F; Perpelea A; Klein M; Nevoigt E
    J Fungi (Basel); 2021 Oct; 7(11):. PubMed ID: 34829203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae.
    Jeong D; Park S; Evelina G; Kim S; Park H; Lee JM; Kim SK; Kim IJ; Oh EJ; Kim SR
    Bioresour Technol; 2024 Feb; 393():130158. PubMed ID: 38070579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in the biological valorization of citrus peel waste into fuels and chemicals.
    Jeong D; Park H; Jang BK; Ju Y; Shin MH; Oh EJ; Lee EJ; Kim SR
    Bioresour Technol; 2021 Mar; 323():124603. PubMed ID: 33406467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomewide and Enzymatic Analysis Reveals Efficient d-Galacturonic Acid Metabolism in the Basidiomycete Yeast Rhodosporidium toruloides.
    Protzko RJ; Hach CA; Coradetti ST; Hackhofer MA; Magosch S; Thieme N; Geiselman GM; Arkin AP; Skerker JM; Dueber JE; Benz JP
    mSystems; 2019 Dec; 4(6):. PubMed ID: 31848309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger.
    Kuivanen J; Dantas H; Mojzita D; Mallmann E; Biz A; Krieger N; Mitchell D; Richard P
    AMB Express; 2014; 4():33. PubMed ID: 24949267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9.
    Kuivanen J; Wang YJ; Richard P
    Microb Cell Fact; 2016 Dec; 15(1):210. PubMed ID: 27955649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.
    Kuivanen J; Penttilä M; Richard P
    Microb Cell Fact; 2015 Jan; 14():2. PubMed ID: 25566698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data for simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered
    Jeong D; Ye S; Park H; Kim SR
    Data Brief; 2020 Apr; 29():105359. PubMed ID: 32195298
    [No Abstract]   [Full Text] [Related]  

  • 16. Fermentation of orange peel hydrolysates by ethanologenic Escherichia coli. Effects of nutritional supplements.
    Grohmann K; Cameron RG; Buslig BS
    Appl Biochem Biotechnol; 1996; 57-58():383-8. PubMed ID: 8669905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae.
    Grohmann K; Baldwin EA; Buslig BS
    Appl Biochem Biotechnol; 1994; 45-46():315-27. PubMed ID: 8010764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of engineered yeast strain fermentation for oligogalacturonides production from pectin-rich waste biomass.
    Yang G; Tan H; Li S; Zhang M; Che J; Li K; Chen W; Yin H
    Bioresour Technol; 2020 Mar; 300():122645. PubMed ID: 31887580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative production of l-galactonate by using recombinant Saccharomyces cerevisiae containing the endogenous galacturonate reductase gene from Cryptococcus diffluens.
    Matsubara T; Hamada S; Wakabayashi A; Kishida M
    J Biosci Bioeng; 2016 Nov; 122(5):639-644. PubMed ID: 27259388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.