These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30498525)

  • 1. An overview on recent advances in the synthesis of sulfonated organic materials, sulfonated silica materials, and sulfonated carbon materials and their catalytic applications in chemical processes.
    Sharghi H; Shiri P; Aberi M
    Beilstein J Org Chem; 2018; 14():2745-2770. PubMed ID: 30498525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in "click" reactions.
    Shiri P; Aboonajmi J
    Beilstein J Org Chem; 2020; 16():551-586. PubMed ID: 32280385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis of Oligosaccharides and Polysaccharides on Sulfonated Solid Acid Catalysts: Relations between Adsorption Properties and Catalytic Activities.
    Sakamoto Y; Imamura K; Onda A
    ACS Omega; 2020 Sep; 5(38):24964-24972. PubMed ID: 33015516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfonated carbon derived from the residue obtained after recovery of essential oil from the leaves of
    Liu Z; Qi Y; Gui M; Feng C; Wang X; Lei Y
    RSC Adv; 2019 Feb; 9(9):5142-5150. PubMed ID: 35514643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration of phenylacetylene on sulfonated carbon materials: active site and intrinsic catalytic activity.
    Yan P; Xie Z; Tian S; Li F; Wang D; Su DS; Qi W
    RSC Adv; 2018 Nov; 8(67):38150-38156. PubMed ID: 35559092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Sulfonated Porous Organic Polymers with a Hydrophobic Core for Efficient Acidic Catalysis in Organic Transformations.
    Munyentwali A; Li C; Li H; Yang Q
    Chem Asian J; 2021 Aug; 16(15):2041-2047. PubMed ID: 34060243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in biomass derived low-cost carbon catalyst for biodiesel production: preparation methods, reaction conditions, and mechanisms.
    Yadav G; Yadav N; Ahmaruzzaman M
    RSC Adv; 2023 Jul; 13(33):23197-23210. PubMed ID: 37545599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Pyranopyrazole Scaffolds' Syntheses Using Sustainable Catalysts-A Review.
    Ganta RK; Kerru N; Maddila S; Jonnalagadda SB
    Molecules; 2021 May; 26(11):. PubMed ID: 34071629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.
    Qi W; Yan P; Su DS
    Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of solid carbon acid catalysts for the esterification of free fatty acids for biodiesel production. Evidence for the leaching of colloidal carbon.
    Deshmane CA; Wright MW; Lachgar A; Rohlfing M; Liu Z; Le J; Hanson BE
    Bioresour Technol; 2013 Nov; 147():597-604. PubMed ID: 24021721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocarbon-based catalysts for selective nitroaromatic hydrogenation: A mini review.
    Yao J; Wang L; Xie D; Jiang L; Li J; Fang X
    Front Chem; 2022; 10():1000680. PubMed ID: 36157045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of lipids from wet microalgae into biodiesel using sulfonated graphene oxide catalysts.
    Cheng J; Qiu Y; Zhang J; Huang R; Yang W; Fan Z
    Bioresour Technol; 2017 Nov; 244(Pt 1):569-574. PubMed ID: 28803107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanochemistry-assisted hydrolysis of softwood over stable sulfonated carbon catalysts in a semi-batch process.
    Scholz D; Xie J; Kröcher O; Vogel F
    RSC Adv; 2019 Oct; 9(57):33525-33538. PubMed ID: 35529150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts.
    Rangraz Y; Heravi MM
    RSC Adv; 2021 Jul; 11(38):23725-23778. PubMed ID: 35479780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of biochar to sulfonated solid acid catalysts for spiramycin hydrolysis: Insights into the sulfonation process.
    Xie Q; Yang X; Xu K; Chen Z; Sarkar B; Dou X
    Environ Res; 2020 Sep; 188():109887. PubMed ID: 32846653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfonated carbon-encapsulated iron nanoparticles as an efficient magnetic nanocatalyst for highly selective synthesis of benzimidazoles.
    Kasprzak A; Bystrzejewski M; Poplawska M
    Dalton Trans; 2018 May; 47(18):6314-6322. PubMed ID: 29645052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SO
    Konwar LJ; Mäki-Arvela P; Mikkola JP
    Chem Rev; 2019 Nov; 119(22):11576-11630. PubMed ID: 31589024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of sulfonated chitosan-derived carbon-based catalysts and their applications in the production of 5-hydroxymethylfurfural.
    Zhang T; Li W; Jin Y; Ou W
    Int J Biol Macromol; 2020 Aug; 157():368-376. PubMed ID: 32344078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Cu(0) encapsulated nanocatalysts as superior catalytic systems in Cu-catalyzed organic transformations.
    Heravi MM; Heidari B; Zadsirjan V; Mohammadi L
    RSC Adv; 2020 Jun; 10(42):24893-24940. PubMed ID: 35517449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.