These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 30498876)

  • 1. Improvement of image quality at CT and MRI using deep learning.
    Higaki T; Nakamura Y; Tatsugami F; Nakaura T; Awai K
    Jpn J Radiol; 2019 Jan; 37(1):73-80. PubMed ID: 30498876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of Deep Learning-Based Noise and Artifact Reduction in Coronal Reformation of Contrast-Enhanced Chest Computed Tomography.
    Kang EJ; Park HS; Jeon K; Lee JW; Lim JK
    J Comput Assist Tomogr; 2022 Jul-Aug 01; 46(4):593-603. PubMed ID: 35617647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive survey on deep learning techniques in CT image quality improvement.
    Li D; Ma L; Li J; Qi S; Yao Y; Teng Y
    Med Biol Eng Comput; 2022 Oct; 60(10):2757-2770. PubMed ID: 35962932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain.
    Ouchi S; Ito S
    Magn Reson Med Sci; 2021 Jun; 20(2):190-203. PubMed ID: 32611937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.
    Lee D; Choi S; Kim HJ
    Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT and MRI Techniques for Imaging Around Orthopedic Hardware.
    Do TD; Sutter R; Skornitzke S; Weber MA
    Rofo; 2018 Jan; 190(1):31-41. PubMed ID: 28934809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks.
    Lee D; Yoo J; Tak S; Ye JC
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):1985-1995. PubMed ID: 29993390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-accelerated image reconstruction in back pain-MRI imaging: reduction of acquisition time and improvement of image quality.
    Estler A; Hauser TK; Brunnée M; Zerweck L; Richter V; Knoppik J; Örgel A; Bürkle E; Adib SD; Hengel H; Nikolaou K; Ernemann U; Gohla G
    Radiol Med; 2024 Mar; 129(3):478-487. PubMed ID: 38349416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning reconstruction framework for X-ray computed tomography with incomplete data.
    Dong J; Fu J; He Z
    PLoS One; 2019; 14(11):e0224426. PubMed ID: 31675363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning with domain adaptation for accelerated projection-reconstruction MR.
    Han Y; Yoo J; Kim HH; Shin HJ; Sung K; Ye JC
    Magn Reson Med; 2018 Sep; 80(3):1189-1205. PubMed ID: 29399869
    [No Abstract]   [Full Text] [Related]  

  • 11. A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction.
    Rahman H; Khan AR; Sadiq T; Farooqi AH; Khan IU; Lim WH
    Tomography; 2023 Dec; 9(6):2158-2189. PubMed ID: 38133073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medical image super-resolution reconstruction algorithms based on deep learning: A survey.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2023 Aug; 238():107590. PubMed ID: 37201252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying Artificial Intelligence to Mitigate Effects of Patient Motion or Other Complicating Factors on Image Quality.
    Nguyen XV; Oztek MA; Nelakurti DD; Brunnquell CL; Mossa-Basha M; Haynor DR; Prevedello LM
    Top Magn Reson Imaging; 2020 Aug; 29(4):175-180. PubMed ID: 32511198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Based Image Reconstruction for Different Medical Imaging Modalities.
    Yaqub M; Jinchao F; Arshid K; Ahmed S; Zhang W; Nawaz MZ; Mahmood T
    Comput Math Methods Med; 2022; 2022():8750648. PubMed ID: 35756423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images.
    Li Y; Li W; Xiong J; Xia J; Xie Y
    Biomed Res Int; 2020; 2020():5193707. PubMed ID: 33204701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possibility of Deep Learning in Medical Imaging Focusing Improvement of Computed Tomography Image Quality.
    Nakamura Y; Higaki T; Tatsugami F; Honda Y; Narita K; Akagi M; Awai K
    J Comput Assist Tomogr; 2020; 44(2):161-167. PubMed ID: 31789682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction.
    Gupta H; Jin KH; Nguyen HQ; McCann MT; Unser M
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1440-1453. PubMed ID: 29870372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning based correction of low performing pixel in computed tomography.
    Patil BD; Singhal V; Agrawal U; Langoju R; Hsieh J; Lakshminarasimhan S; Das B
    Biomed Phys Eng Express; 2022 Aug; 8(5):. PubMed ID: 35939980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new metal artifact reduction algorithm based on a deteriorated CT image.
    Kano T; Koseki M
    J Xray Sci Technol; 2016 Nov; 24(6):901-912. PubMed ID: 27612053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image filtering techniques for medical image post-processing: an overview.
    Behrenbruch CP; Petroudi S; Bond S; Declerck JD; Leong FJ; Brady JM
    Br J Radiol; 2004; 77 Spec No 2():S126-32. PubMed ID: 15677354
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 28.