These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30498878)

  • 1. An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface.
    Zou Y; Zhao X; Chu Y; Zhao Y; Xu W; Han J
    Med Biol Eng Comput; 2019 Apr; 57(4):939-952. PubMed ID: 30498878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-to-subject adaptation to reduce calibration time in motor imagery-based brain-computer interface.
    Arvaneh M; Robertson I; Ward TE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6501-4. PubMed ID: 25571485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighted Transfer Learning for Improving Motor Imagery-Based Brain-Computer Interface.
    Azab AM; Mihaylova L; Ang KK; Arvaneh M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1352-1359. PubMed ID: 31217122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of Variabilities in EEG Dynamics During Motor Imagery-Based Multiclass Brain-Computer Interface.
    Saha S; Ahmed KIU; Mostafa R; Hadjileontiadis L; Khandoker A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):371-382. PubMed ID: 29432108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor imagery EEG decoding using manifold embedded transfer learning.
    Cai Y; She Q; Ji J; Ma Y; Zhang J; Zhang Y
    J Neurosci Methods; 2022 Mar; 370():109489. PubMed ID: 35090904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Semi-Supervised Progressive Learning Algorithm for Brain-Computer Interface.
    Wei Y; Li J; Ji H; Jin L; Liu L; Bai Z; Ye C
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2067-2076. PubMed ID: 35853068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Across-subject offline decoding of motor imagery from MEG and EEG.
    Halme HL; Parkkonen L
    Sci Rep; 2018 Jul; 8(1):10087. PubMed ID: 29973645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-independent meta-learning framework towards optimal training of EEG-based classifiers.
    Ng HW; Guan C
    Neural Netw; 2024 Apr; 172():106108. PubMed ID: 38219680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparse Group Representation Model for Motor Imagery EEG Classification.
    Jiao Y; Zhang Y; Chen X; Yin E; Jin J; Wang X; Cichocki A
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):631-641. PubMed ID: 29994055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tangent Space Features-Based Transfer Learning Classification Model for Two-Class Motor Imagery Brain-Computer Interface.
    Gaur P; McCreadie K; Pachori RB; Wang H; Prasad G
    Int J Neural Syst; 2019 Dec; 29(10):1950025. PubMed ID: 31711330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Subject-Independent Brain-Computer Interface Framework Based on Supervised Autoencoder.
    Ayoobi N; Sadeghian EB
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():218-221. PubMed ID: 36086482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero-Shot Learning for EEG Classification in Motor Imagery-Based BCI System.
    Duan L; Li J; Ji H; Pang Z; Zheng X; Lu R; Li M; Zhuang J
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2411-2419. PubMed ID: 32986556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-Based Eye Movement Recognition Using Brain-Computer Interface and Random Forests.
    Antoniou E; Bozios P; Christou V; Tzimourta KD; Kalafatakis K; G Tsipouras M; Giannakeas N; Tzallas AT
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33801663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decision tree structure based classification of EEG signals recorded during two dimensional cursor movement imagery.
    Aydemir O; Kayikcioglu T
    J Neurosci Methods; 2014 May; 229():68-75. PubMed ID: 24751647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic time warping-based transfer learning for improving common spatial patterns in brain-computer interface.
    Azab AM; Ahmadi H; Mihaylova L; Arvaneh M
    J Neural Eng; 2020 Feb; 17(1):016061. PubMed ID: 31860902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised and Semisupervised Manifold Embedded Knowledge Transfer in Motor Imagery-Based BCI.
    Xu Y; Yin H; Yi W; Huang X; Jian W; Wang C; Hu R
    Comput Intell Neurosci; 2022; 2022():1603104. PubMed ID: 36299440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Three-class Motor Imagery Classification Based on Optimal Sub-band Features of Independent Components].
    Kang S; Zhou B; Wu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):208-15. PubMed ID: 29708317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.