BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30498953)

  • 1. A strong structural correlation between short inverted repeat sequences and the polyadenylation signal in yeast and nucleosome exclusion by these inverted repeats.
    Miura O; Ogake T; Yoneyama H; Kikuchi Y; Ohyama T
    Curr Genet; 2019 Apr; 65(2):575-590. PubMed ID: 30498953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement or exclusion of inverted repeat sequences with cruciform-forming potential in Escherichia coli revealed by genome-wide analyses.
    Miura O; Ogake T; Ohyama T
    Curr Genet; 2018 Aug; 64(4):945-958. PubMed ID: 29484452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome.
    Strawbridge EM; Benson G; Gelfand Y; Benham CJ
    Curr Genet; 2010 Aug; 56(4):321-40. PubMed ID: 20446088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin mediation of a transcriptional memory effect in yeast.
    Paul E; Tirosh I; Lai W; Buck MJ; Palumbo MJ; Morse RH
    G3 (Bethesda); 2015 Mar; 5(5):829-38. PubMed ID: 25748434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization.
    Tsankov A; Yanagisawa Y; Rhind N; Regev A; Rando OJ
    Genome Res; 2011 Nov; 21(11):1851-62. PubMed ID: 21914852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals.
    Halder K; Halder R; Chowdhury S
    Mol Biosyst; 2009 Dec; 5(12):1703-12. PubMed ID: 19587895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA.
    Schroth GP; Ho PS
    Nucleic Acids Res; 1995 Jun; 23(11):1977-83. PubMed ID: 7596826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.
    Ma J; Yang B; Zhu W; Sun L; Tian J; Wang X
    Gene; 2013 Oct; 528(2):120-31. PubMed ID: 23900198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosome positioning in Saccharomyces cerevisiae.
    Jansen A; Verstrepen KJ
    Microbiol Mol Biol Rev; 2011 Jun; 75(2):301-20. PubMed ID: 21646431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genome analysis suggests characteristics of yeast inverted repeats that are important for transcriptional activity.
    Humphrey-Dixon EL; Sharp R; Schuckers M; Lock R
    Genome; 2011 Nov; 54(11):934-42. PubMed ID: 22029652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of inverted repeat sequences in human gene promoters reveals their non-random distribution and association with specific biological pathways.
    Brázda V; Bartas M; Lýsek J; Coufal J; Fojta M
    Genomics; 2020 Jul; 112(4):2772-2777. PubMed ID: 32234431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergent distributions of inverted repeats and G-quadruplex forming sequences in Saccharomyces cerevisiae.
    Čutová M; Manta J; Porubiaková O; Kaura P; Šťastný J; Jagelská EB; Goswami P; Bartas M; Brázda V
    Genomics; 2020 Mar; 112(2):1897-1901. PubMed ID: 31706022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric nucleosomes flank promoters in the budding yeast genome.
    Ramachandran S; Zentner GE; Henikoff S
    Genome Res; 2015 Mar; 25(3):381-90. PubMed ID: 25491770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex Analyses of Short Inverted Repeats in All Sequenced Chloroplast DNAs.
    Brázda V; Lýsek J; Bartas M; Fojta M
    Biomed Res Int; 2018; 2018():1097018. PubMed ID: 30140690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute nucleosome occupancy map for the
    Oberbeckmann E; Wolff M; Krietenstein N; Heron M; Ellins JL; Schmid A; Krebs S; Blum H; Gerland U; Korber P
    Genome Res; 2019 Dec; 29(12):1996-2009. PubMed ID: 31694866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping nucleosome positions using DNase-seq.
    Zhong J; Luo K; Winter PS; Crawford GE; Iversen ES; Hartemink AJ
    Genome Res; 2016 Mar; 26(3):351-64. PubMed ID: 26772197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Yeast Minichromosome System Consisting of Highly Positioned Nucleosomes in Vivo.
    Fuse T; Yanagida A; Shimizu M
    Biol Pharm Bull; 2019 Feb; 42(2):289-294. PubMed ID: 30531092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Z curve theory-based analysis of the dynamic nature of nucleosome positioning in Saccharomyces cerevisiae.
    Wu X; Liu H; Liu H; Su J; Lv J; Cui Y; Wang F; Zhang Y
    Gene; 2013 Nov; 530(1):8-18. PubMed ID: 23958656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of nucleosome occupancy in Saccharomyces cerevisiae using position-correlation scoring function.
    Xing Y; Zhao X; Cai L
    Genomics; 2011 Nov; 98(5):359-66. PubMed ID: 21839161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution.
    Zhou X; Blocker AW; Airoldi EM; O'Shea EK
    Elife; 2016 Sep; 5():. PubMed ID: 27623011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.