These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 30499081)
1. Recombinant Antibody Production in CHO and NS0 Cells: Differences and Similarities. Dhara VG; Naik HM; Majewska NI; Betenbaugh MJ BioDrugs; 2018 Dec; 32(6):571-584. PubMed ID: 30499081 [TBL] [Abstract][Full Text] [Related]
2. Generation of a cholesterol-independent, non-GS NS0 cell line through chemical treatment and application for high titer antibody production. Li J; Gu W; Edmondson DG; Lu C; Vijayasankaran N; Figueroa B; Stevenson D; Ryll T; Li F Biotechnol Bioeng; 2012 Jul; 109(7):1685-92. PubMed ID: 22252532 [TBL] [Abstract][Full Text] [Related]
3. Superfluous glutamine synthetase activity in Chinese Hamster Ovary cells selected under glutamine limitation is growth limiting in glutamine-replete conditions and can be inhibited by serine. Maralingannavar V; Parmar D; Panchagnula V; Gadgil M Biotechnol Prog; 2019 Sep; 35(5):e2856. PubMed ID: 31148368 [TBL] [Abstract][Full Text] [Related]
4. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells. Noh SM; Park JH; Lim MS; Kim JW; Lee GM Appl Microbiol Biotechnol; 2017 Feb; 101(3):1035-1045. PubMed ID: 27704181 [TBL] [Abstract][Full Text] [Related]
5. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
6. Derivation and characterization of cholesterol-independent non-GS NS0 cell lines for production of recombinant antibodies. Hartman TE; Sar N; Genereux K; Barritt DS; He Y; Burky JE; Wesson MC; Tso JY; Tsurushita N; Zhou W; Sauer PW Biotechnol Bioeng; 2007 Feb; 96(2):294-306. PubMed ID: 16897745 [TBL] [Abstract][Full Text] [Related]
7. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567 [TBL] [Abstract][Full Text] [Related]
8. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. Nakamura T; Omasa T J Biosci Bioeng; 2015 Sep; 120(3):323-9. PubMed ID: 25792187 [TBL] [Abstract][Full Text] [Related]
9. Effects of glutamine and asparagine on recombinant antibody production using CHO-GS cell lines. Xu P; Dai XP; Graf E; Martel R; Russell R Biotechnol Prog; 2014; 30(6):1457-68. PubMed ID: 25079388 [TBL] [Abstract][Full Text] [Related]
10. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. Lin PC; Chan KF; Kiess IA; Tan J; Shahreel W; Wong SY; Song Z MAbs; 2019 Jul; 11(5):965-976. PubMed ID: 31043114 [TBL] [Abstract][Full Text] [Related]
11. Control of amino acid transport into Chinese hamster ovary cells. Geoghegan D; Arnall C; Hatton D; Noble-Longster J; Sellick C; Senussi T; James DC Biotechnol Bioeng; 2018 Dec; 115(12):2908-2929. PubMed ID: 29987891 [TBL] [Abstract][Full Text] [Related]
12. Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11-derived dihydrofolate reductase deficient host cell. Hu Z; Guo D; Yip SS; Zhan D; Misaghi S; Joly JC; Snedecor BR; Shen AY Biotechnol Prog; 2013; 29(4):980-5. PubMed ID: 23606666 [TBL] [Abstract][Full Text] [Related]
13. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment. Rajendra Y; Hougland MD; Alam R; Morehead TA; Barnard GC Biotechnol Bioeng; 2015 May; 112(5):977-86. PubMed ID: 25502369 [TBL] [Abstract][Full Text] [Related]
14. Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter. Fan L; Kadura I; Krebs LE; Larson JL; Bowden DM; Frye CC J Biotechnol; 2013 Dec; 168(4):652-8. PubMed ID: 23994266 [TBL] [Abstract][Full Text] [Related]
15. Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Baker KN; Rendall MH; Hills AE; Hoare M; Freedman RB; James DC Biotechnol Bioeng; 2001 May; 73(3):188-202. PubMed ID: 11257601 [TBL] [Abstract][Full Text] [Related]
16. Methionine sulfoximine supplementation enhances productivity in GS-CHOK1SV cell lines through glutathione biosynthesis. Feary M; Racher AJ; Young RJ; Smales CM Biotechnol Prog; 2017 Jan; 33(1):17-25. PubMed ID: 27689785 [TBL] [Abstract][Full Text] [Related]
17. Tetrahydrofolate increases suspension growth of dihydrofolate reductase-deficient chinese hamster ovary DG44 cells in chemically defined media. Kim BG; Park HW Biotechnol Prog; 2016 Nov; 32(6):1539-1546. PubMed ID: 27578320 [TBL] [Abstract][Full Text] [Related]
18. Early prediction of instability of Chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Dorai H; Corisdeo S; Ellis D; Kinney C; Chomo M; Hawley-Nelson P; Moore G; Betenbaugh MJ; Ganguly S Biotechnol Bioeng; 2012 Apr; 109(4):1016-30. PubMed ID: 22068683 [TBL] [Abstract][Full Text] [Related]