These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

683 related articles for article (PubMed ID: 30499265)

  • 21. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2013 Nov; 40(11):111901. PubMed ID: 24320434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation.
    Jia X; Gu X; Graves YJ; Folkerts M; Jiang SB
    Phys Med Biol; 2011 Nov; 56(22):7017-31. PubMed ID: 22016026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation.
    Zhou B; Yu CX; Chen DZ; Hu XS
    Med Phys; 2010 Nov; 37(11):5593-603. PubMed ID: 21158271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geant4-based Monte Carlo simulations on GPU for medical applications.
    Bert J; Perez-Ponce H; El Bitar Z; Jan S; Boursier Y; Vintache D; Bonissent A; Morel C; Brasse D; Visvikis D
    Phys Med Biol; 2013 Aug; 58(16):5593-611. PubMed ID: 23892709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4.
    Jahnke L; Fleckenstein J; Wenz F; Hesser J
    Phys Med Biol; 2012 Mar; 57(5):1217-29. PubMed ID: 22330587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
    Tian Z; Shi F; Folkerts M; Qin N; Jiang SB; Jia X
    Phys Med Biol; 2015 Oct; 60(19):7419-35. PubMed ID: 26352012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions.
    Wan Chan Tseung H; Ma J; Beltran C
    Med Phys; 2015 Jun; 42(6):2967-78. PubMed ID: 26127050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics.
    Doronin A; Meglinski I
    J Biomed Opt; 2012 Sep; 17(9):90504-1. PubMed ID: 23085901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid Monte Carlo simulation of detector DQE(f).
    Star-Lack J; Sun M; Meyer A; Morf D; Constantin D; Fahrig R; Abel E
    Med Phys; 2014 Mar; 41(3):031916. PubMed ID: 24593734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new open-source GPU-based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation --- Part I: Core algorithm and validation.
    Tsai MY; Tian Z; Qin N; Yan C; Lai Y; Hung SH; Chi Y; Jia X
    Med Phys; 2020 Apr; 47(4):1958-1970. PubMed ID: 31971258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitigating inherent noise in Monte Carlo dose distributions using dilated U-Net.
    Javaid U; Souris K; Dasnoy D; Huang S; Lee JA
    Med Phys; 2019 Dec; 46(12):5790-5798. PubMed ID: 31600829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A GPU implementation of EGSnrc's Monte Carlo photon transport for imaging applications.
    Lippuner J; Elbakri IA
    Phys Med Biol; 2011 Nov; 56(22):7145-62. PubMed ID: 22025188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D data denoising via Nonlocal Means filter by using parallel GPU strategies.
    Cuomo S; De Michele P; Piccialli F
    Comput Math Methods Med; 2014; 2014():523862. PubMed ID: 25045397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GPU-accelerated Monte Carlo simulation of MV-CBCT.
    Shi M; Myronakis M; Jacobson M; Ferguson D; Williams C; Lehmann M; Baturin P; Huber P; Fueglistaller R; Lozano IV; Harris T; Morf D; Berbeco RI
    Phys Med Biol; 2020 Dec; 65(23):235042. PubMed ID: 33263311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A GPU-accelerated framework for rapid estimation of scanner-specific scatter in CT for virtual imaging trials.
    Sharma S; Abadi E; Kapadia A; Segars WP; Samei E
    Phys Med Biol; 2021 Mar; 66(7):. PubMed ID: 33652421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction.
    Aguiar P; Pino F; Silva-Rodríguez J; Pavía J; Ros D; Ruibal A; El Bitar Z
    Med Phys; 2014 Mar; 41(3):032501. PubMed ID: 24593739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy.
    Chi Y; Tian Z; Jia X
    Phys Med Biol; 2016 Aug; 61(15):5851-67. PubMed ID: 27427297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. hybridMANTIS: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators.
    Sharma D; Badal A; Badano A
    Phys Med Biol; 2012 Apr; 57(8):2357-72. PubMed ID: 22469917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.